ISSN 1004-4140
CN 11-3017/P
GUO Q, YAO X F. Progress of Material Decomposition Algorithms in Dual-energy CT Imaging[J]. CT Theory and Applications, 2023, 32(1): 139-146. DOI: 10.15953/j.ctta.2021.067. (in Chinese).
Citation: GUO Q, YAO X F. Progress of Material Decomposition Algorithms in Dual-energy CT Imaging[J]. CT Theory and Applications, 2023, 32(1): 139-146. DOI: 10.15953/j.ctta.2021.067. (in Chinese).

Progress of Material Decomposition Algorithms in Dual-energy CT Imaging

More Information
  • Corresponding author:

    男,上海健康医学院医学影像学院教授、博士生导师,主要从事医学图像处理方面的研究,E-mail:yao6636329@hotmail.com

  • Received Date: December 16, 2021
  • Accepted Date: April 05, 2022
  • Available Online: April 17, 2022
  • Published Date: January 30, 2023
  • Spectral CT can produce basis materials with different X-ray energies. Subsequently, the generated basis materials can be used for qualitative and quantitative evaluation of tissue components and contrast agent distribution. This approach presents a superior ability to separate and identify imaging materials compared to traditional single-energy CT. Dual-energy spectrum technology is one of the most commonly used modes in spectrum CT, which plays an important role in clinical application. In this study, the decomposition methods of a basis material in the image domain of dual-energy spectrum CT were classified into two categories: two-material decomposition and multi-material decomposition. Finally, these methods are summarized and trend of future development is addressed.
  • [1]
    高海英. 能谱CT成像关键参数检测技术研究[D]. 广州: 南方医科大学, 2015.

    GAO H Y. Study on testing techniques of spectral CT imaging key parameters[D]. Guangzhou: Southern Medical University, 2015. (in Chinese).
    [2]
    韩文艳. CT能谱成像的基本原理与临床应用优势[J]. 中国医疗设备, 2015,30(12): 90−91. doi: 10.3969/j.issn.1674-1633.2015.12.025

    HAN W Y. Basic principle and advantages of clinical application of CT energy spectrum imaging[J]. China Medical Devices, 2015, 30(12): 90−91. (in Chinese). doi: 10.3969/j.issn.1674-1633.2015.12.025
    [3]
    ALVAREZ R E, MACOVSKI A. Energy-selective reconstructions in X-ray computerized tomography[J]. Physics in Medicine & Biology, 1976, 21(5): 733−744.
    [4]
    王丽新, 孙丰荣, 仲海, 等. 双能CT成像的数值仿真[J]. 航天医学与医学工程, 2015,28(5): 350−357.

    WANG L X, SUN F R, ZHONG H, et al. Numerical simulation of dual-energy CT imaging[J]. Space Medicine & Medical Engineering, 2015, 28(5): 350−357. (in Chinese).
    [5]
    MAASS C, BAER M, KACHELRIESS M. Image-based dual energy CT using optimized precorrection functions: A practical new approach of material decomposition in image domain[J]. Medical Physics, 2009, 36(8): 3818−3829. doi: 10.1118/1.3157235
    [6]
    贺芳芳. 能谱CT基物质分解技术应用研究[D]. 济南: 山东大学, 2020.

    HE F F. Application research on basis material decomposition of spectral CT[D]. Jinan: Shandong University, 2020. (in Chinese).
    [7]
    MENDONÇA P R S, BHOTIKA R, MADDAH M, et al. Multi-material decomposition of spectral CT images[C]//Medical Imaging 2010: Physics of Medical Imaging. SPIE, 2010, 7622: 633-641.
    [8]
    周正东, 章栩苓, 辛润超, 等. 基于MAP-EM算法的双能CT直接迭代基材料分解方法[J]. 东南大学学报(自然科学版), 2020,50(5): 935−941. doi: 10.3969/j.issn.1001-0505.2020.05.020

    ZHOU Z D, ZHANG X L, XIN R C, et al. Direct iterative basis material decomposition method for dual-energy CT based on MAP-EM algorithm[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(5): 935−941. (in Chinese). doi: 10.3969/j.issn.1001-0505.2020.05.020
    [9]
    孙英博, 孔慧华, 张雁霞. 基于投影域分解的多能谱CT造影剂物质识别研究[J]. 中北大学学报 (自然科学版), 2019,40(2): 167−172.

    SUN Y B, KONG H H, ZHANG Y X. Multi-energy spectral CT contrast agent material recognition based on projection domain decomposition[J]. Journal of North University of China (Natural Science Edition), 2019, 40(2): 167−172. (in Chinese).
    [10]
    LI Z, RAVISHANKAR S, LONG Y, et al. Learned mixed material models for efficient clustering based dual-energy CT image decomposition[C]//2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2018: 529-533.
    [11]
    李磊. 双能CT图像重建算法研究[D]. 郑州: 解放军信息工程大学, 2016.

    LI L. Research on image reconstruction algorithms of dual energy computed tomography[D]. Zhengzhou: Information Engineering University, 2016. (in Chinese).
    [12]
    MCCOLLOUGH C H, SCHMIDT B, LIU X, et al. Dual-energy algorithms and postprocessing techniques[M]//Dual energy CT in clinical practice. Springer, Berlin, Heidelberg, 2011: 43-51.
    [13]
    RUTHERFORD R, PULLAN B, ISHERWOOD I. X-ray energies for effective atomic number determination[J]. Neuroradiology, 1976, 11(1): 23−28. doi: 10.1007/BF00327254
    [14]
    NISHIMURA D G, MACOVSKI A, BRODY W R. Noise reduction methods for hybrid subtraction[J]. Medical Physics, 1984, 11(3): 259−265. doi: 10.1118/1.595501
    [15]
    JOHNS P C, YAFFE M J. Theoretical optimization of dual-energy X-ray imaging with application to mammography[J]. Medical Physics, 1985, 12(3): 289−296. doi: 10.1118/1.595766
    [16]
    KALENDER W A, KLOTZ E, KOSTARIDOU L. An algorithm for noise suppression in dual energy CT material density images[J]. IEEE Transactions on Medical Imaging, 1988, 7(3): 218−224. doi: 10.1109/42.7785
    [17]
    HINSHAW D A, DOBBINS III J T. Recent progress in noise reduction and scatter correction in dual-energy imaging[C]//Medical Imaging 1995: Physics of Medical Imaging, SPIE, 1995, 2432: 134-142.
    [18]
    WARP R J, DOBBINS J T. Quantitative evaluation of noise reduction strategies in dual-energy imaging[J]. Medical Physics, 2003, 30(2): 190−198. doi: 10.1118/1.1538232
    [19]
    DONG X, NIU T, ZHU L. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization[J]. Medical Physics, 2014, 41(5): 051909(1-9).
    [20]
    ZHAO W, NIU T, XING L, et al. Using edge-preserving algorithm with non-local mean for significantly improved image-domain material decomposition in dual-energy CT[J]. Physics in Medicine & Biology, 2016, 61(3): 1332−1351.
    [21]
    陈佩君, 冯鹏, 伍伟文, 等. 基于图像总变分和张量字典的多能谱CT材料识别研究[J]. 光学学报, 2018, 38(11): 1111002(1-8).

    CHEN P J, FENG P, WU W W, et al. Material discrimination by multi-spectral CT based on lmage total variation and tensor dictionary[J]. Acta Optica Sinica 2018, 38(11): 1111002(1-8). (in Chinese).
    [22]
    DENG G, CHEN M, HE P, et al. The experimental study on geometric calibration and material discrimination for in Vivo dual-energy CT imaging[J]. Biomedical Research International, 2019, 2019: 7614589.
    [23]
    NIU T, DONG X, PETRONGOLO M, et al. Iterative image-domain decomposition for dual-energy CT[J]. Medical Physics, 2014, 41(4): 041901(1−10).
    [24]
    TANG S, YANG M, HU X, et al. Multiscale penalized weighted least-squares image-domain decomposition for dual-energy CT[C]//2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2015: 1-6.
    [25]
    LI Z, RAVISHANKAR S, LONG Y, et al. DECT-MULTRA: Dual-energy CT image decomposition with learned mixed material models and efficient clustering[J]. IEEE Transactions on Medical Imaging, 2020, 39(4): 1223−1234. doi: 10.1109/TMI.2019.2946177
    [26]
    王冲旭, 陈平, 潘晋孝, 等. 基于迭代残差网络的双能CT图像材料分解研究[J]. CT理论与应用研究, 2022,31(1): 47−54. DOI: 10.15953/j.1004-4140.2022.31.01.05.

    WANG C X, CHEN P, PAN J X, et al. Research on material decomposition of dual-energy CT image based on iterative residual network[J]. CT Theory and Applications, 2022, 31(1): 47−54. DOI: 10.15953/j.1004-4140.2022.31.01.05. (in Chinese).
    [27]
    XU Y, YAN B, ZHANG J, et al. Image decomposition algorithm for dual-energy computed tomography via fully convolutional network[J]. Computational and Mathematical Methods in Medicine, 2018, 2018(1): 2527516.
    [28]
    朱冬亮, 文奕, 陶欣. 深度学习在生物医学领域的应用进展述评[J]. 世界科技研究与发展, 2020,42(5): 510−519.

    ZHU D L, WEN Y, TAO X. A Review of the application progress of deep learning in biomedical field[J]. World Sci-Tech R & D, 2020, 42(5): 510−519. (in Chinese).
    [29]
    KAWAHARA D, SAITO A, OZAWA S, et al. Image synthesis with deep convolutional generative adversarial networks for material decomposition in dual-energy CT from a kilovoltage CT[J]. Computers in Biology and Medicine, 2021, 128: 104111. doi: 10.1016/j.compbiomed.2020.104111
    [30]
    LYU T, ZHAO W, ZHU Y, et al. Estimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network[J]. Medical Image Analysis, 2021, 70: 102001. doi: 10.1016/j.media.2021.102001
    [31]
    CLARK D P, HOLBROOK M, BADEA C T. Multi-energy CT decomposition using convolutional neural networks[C]//Medical Imaging 2018: Physics of Medical Imaging. International Society for Optics and Photonics, 2018, 10573: 415-423.
    [32]
    ZHANG W, ZHANG H, WANG L, et al. Image domain dual material decomposition for dual-energy CT using butterfly network[J]. Medical Physics, 2019, 46(5): 2037−2051. doi: 10.1002/mp.13489
    [33]
    SHI Z, LI H, CAO Q, et al. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks[J]. Medical Physics, 2021, 48(6): 2891−2905. doi: 10.1002/mp.14828
    [34]
    郭志鹏. Micro-CT重建图像质量增强的方法研究[D]. 西安: 西安电子科技大学, 2017.

    GUO Z P. Research on image quality enhancement method in micro-CT reconstruction[D]. Xi'an: Xidian University, 2017. (in Chinese).
    [35]
    LIU X, YU L, PRIMAK A N, et al. Quantitative imaging of element composition and mass fraction using dual-energy CT: Three-material decomposition[J]. Medical Physics, 2009, 36(5): 1602−1609. doi: 10.1118/1.3097632
    [36]
    MENDONÇA P R, LAMB P, SAHANI D V. A flexible method for multi-material decomposition of dual-energy CT images[J]. IEEE Transactions on Medical Imaging, 2014, 33(1): 99−116. doi: 10.1109/TMI.2013.2281719
    [37]
    JIANG Y, XUE Y, LYU Q, et al. Noise suppression in image-domain multi-material decomposition for dual-energy CT[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(2): 523−535. doi: 10.1109/TBME.2019.2916907
    [38]
    LEE H, KIM H J, LEE D, et al. Improvement with the multi-material decomposition framework in dual-energy computed tomography: A phantom study[J]. Journal of the Korean Physical Society, 2020, 77(6): 515−523. doi: 10.3938/jkps.77.515
    [39]
    降俊汝, 余海军, 龚长城, 等. 基于双能CT图像域的DL-RTV多材料分解研究[J]. 光学学报, 2020,40(21): 2111004(1−12).

    JIANG J R, YU H J, GONG C C, et al. Image-domain multimaterial decomposition for dual-energy CT based on dictionary learning and relative total variation[J]. Acta Optica Sinica, 2020, 40(21): 2111004(1−12). (in Chinese).
    [40]
    LONG Y, FESSLER J A. Multi-material decomposition using statistical image reconstruction for spectral CT[J]. IEEE Transactions on Medical Imaging, 2014, 33(8): 1614−1626. doi: 10.1109/TMI.2014.2320284
    [41]
    XUE Y, RUAN R, HU X, et al. Statistical image-domain multimaterial decomposition for dual-energy CT[J]. Medical Physics, 2017, 44(3): 886−901. doi: 10.1002/mp.12096
    [42]
    DING Q, NIU T, ZHANG X, et al. Image-domain multimaterial decomposition for dual-energy CT based on prior information of material images[J]. Medical Physics, 2018, 45(8): 3614−3626. doi: 10.1002/mp.13001
    [43]
    PATINO M, PROCHOWSKI A, AGRAWAL M D, et al. Material separation using dual-energy CT: Current and emerging applications[J]. Radiographics, 2016, 36(4): 1087−1105. doi: 10.1148/rg.2016150220
  • Related Articles

    [1]ZHANG Ran, KONG Huihua, LI Jiaxin, SONG Yijiao. Dense Sandstone Material Decomposition Based on Improved Convolutional Neural Network[J]. CT Theory and Applications, 2025, 34(1): 117-128. DOI: 10.15953/j.ctta.2024.131
    [2]ZANG Yikai, LI Jing, LU Xiuliang, YAN Cheng. Image Quality Inprovement for Small Vessel in Diabetic Foot Arteriography Using Dual-energy Computed Tomography[J]. CT Theory and Applications, 2025, 34(1): 83-88. DOI: 10.15953/j.ctta.2024.130
    [3]DI Yunxia, KONG Huihua, NIU Xiaowei. Research on Image Analysis Method of Spectral CT Based on Principal Component Analysis[J]. CT Theory and Applications, 2022, 31(6): 749-760. DOI: 10.15953/j.ctta.2022.077
    [4]CHEN Linyu, FANG Shu, CHEN Yong, DONG Haipeng, WANG Lan, CHANG Rui. Comparison of Image Quality between Virtual Monochromatic Images and Conventional CT Images[J]. CT Theory and Applications, 2022, 31(2): 219-226. DOI: 10.15953/j.ctta.2021.041
    [5]WANG Chongxu, CHEN Ping, PAN Jinxiao, LIU Bin. Research on Material Decomposition of Dual-energy CT Image Based on Iterative Residual Network[J]. CT Theory and Applications, 2022, 31(1): 47-54. DOI: 10.15953/j.1004-4140.2022.31.01.05
    [6]LEI Ping-gui, WANG Xiao-ying, WANG He, LIU Jian-xin, JIANG Jian. The Study on Monochromatic Image Feature for Renal Solid Mass with Dual-energy CT in Nephrographic Phase[J]. CT Theory and Applications, 2017, 26(1): 19-26. DOI: 10.15953/j.1004-4140.2017.26.01.03
    [7]BU Yu-lian, ZHANG Huan, PAN Zi-lai, YANG Wen-jie, CHEN Ke-min, YAN Fu-hua. The Study of the Image Quality of Dual Energy Spectral CT in the Assessment of Myocardial Infarction[J]. CT Theory and Applications, 2016, 25(3): 279-286. DOI: 10.15953/j.1004-4140.2016.25.03.04
    [8]LIU Yuan-yuan, CHENG Jian-ping, ZHANG Li, ZHENG Peng, CHEN Zhi-qiang. Improvement on Dual Energy CT Reconstruction Algorithm from Incomplete Data Based on Image Segmentation[J]. CT Theory and Applications, 2013, 22(4): 579-586.
    [9]ZHENG Peng, HAO Jia, XING Yu-xiang. Methodic Error Analysis of Basis Material Decomposition Method in Dual-Energy Computed Tomography[J]. CT Theory and Applications, 2011, 20(2): 153-162.
    [10]DAI Bin, ZHANG Wei-bin, TIAN Yong, TANG Xing. Analysis of Damaging Crack in Industrial CT Image of Energetic Material[J]. CT Theory and Applications, 2009, 18(4): 68-74.
  • Cited by

    Periodical cited type(7)

    1. 黄美玲. 能谱CT对孤立性肺结节的鉴别诊断价值分析. 中外医学研究. 2023(15): 68-72 .
    2. 查小久,黄礼年,贡会源,王安生. 孤立性肺结节恶性概率临床预测模型的建立. 蚌埠医学院学报. 2023(11): 1514-1519 .
    3. 刘亚玲,吕增波,刘美艳. 肺磨玻璃样结节的CT表现及良、恶性的相关性分析. 中国CT和MRI杂志. 2022(01): 76-78 .
    4. 孟祥宇. 肺小结节影像学的研究进展. 中国疗养医学. 2022(07): 693-696 .
    5. 朱妍,王剑. 肺小结节危险因素分析及恶性预测模型的建立. 中华肺部疾病杂志(电子版). 2020(02): 223-228 .
    6. 王刚,谢浩锋,郑晓林,方学文,余芬芬,袁焕初,杜贺钦,邹玉坚. 新型冠状病毒肺炎临床与CT诊断特征的初步研究——东莞地区病例分析. CT理论与应用研究. 2020(04): 407-415 . 本站查看
    7. 丁军明,孙毅,赵研. 探究高分辨力CT在肺部小结节诊断中的应用价值. 世界复合医学. 2019(11): 142-144 .

    Other cited types(8)

Catalog

    Article views (2836) PDF downloads (253) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return