Citation: | JIA J Y, DING C, ZHOU W, et al. Advances in Research on Image-based Prediction of Colorectal in Cancer Gene Mutation Status[J]. CT Theory and Applications, 2023, 32(1): 147-152. DOI: 10.15953/j.ctta.2022.028. (in Chinese). |
[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394−424. doi: 10.3322/caac.21492
|
[2] |
SUNDAR R, HONG D S, KOPETZ S, et al. Targeting BRAF-mutant colorectal cancer: Progress in combination strategies[J]. Cancer Discovery, 2017, 7(6): 558−560. doi: 10.1158/2159-8290.CD-17-0087
|
[3] |
DAI D, WANG Y, ZHU L, et al. Prognostic value of KRAS mutation status in colorectal cancer patients: A population-based competing risk analysis[J]. PeerJ, 2020, 8(6): e9149.
|
[4] |
DERBEL O, WANG Q, DESSEIGNE F, et al. Impact of KRAS, BRAF and PI3 KCA mutations in rectal carcinomas treated with neoadjuvant radiochemotherapy and surgery[J]. BMC Cancer, 2013, 13: 200. doi: 10.1186/1471-2407-13-200
|
[5] |
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Colon cancer, version 2. 2021, NCCN clinical practice guidelines in oncology[J]. Journal of National Comprehensive Cancer Network, 2021, 19(3): 329−359. doi: 10.6004/jnccn.2021.0012
|
[6] |
SCLAFANI F, CHAU I, CUNNINGHAM D, et al. KRAS and BRAF mutations in circulating tumour DNA from locally advanced rectal cancer[J]. Scientific Reports, 2018, 8(1): 1445. doi: 10.1038/s41598-018-19212-5
|
[7] |
TABERNERO J, LENZ H J, SIENA S, et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: A retrospective, exploratory analysis of the CORRECT trial[J]. The Lancet Oncology, 2015, 16(8): 937−948. doi: 10.1016/S1470-2045(15)00138-2
|
[8] |
SONG C, SHEN B, DONG Z, et al. Diameter of superior rectal vein-CT predictor of KRAS mutation in rectal carcinoma[J]. Cancer Management and Research, 2020, 12: 10919−10928. doi: 10.2147/CMAR.S270727
|
[9] |
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: Images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563−577. doi: 10.1148/radiol.2015151169
|
[10] |
LI Y, ERESEN A, SHANGGUAN J, et al. Preoperative prediction of perineural invasion and KRAS mutation in colon cancer using machine learning[J]. Journal of Cancer Research and Clinical Oncology, 2020, 146(12): 3165−3174. doi: 10.1007/s00432-020-03354-z
|
[11] |
YANG L, DONG D, FANG M, et al. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?[J]. European Radiology, 2018, 28(5): 2058−2067. doi: 10.1007/s00330-017-5146-8
|
[12] |
HOSNY A, PARMAR C, QUACKENBUSH J, et al. Artificial intelligence in radiology[J]. Nature Reviews Cancer, 2018, 18(8): 500−510. doi: 10.1038/s41568-018-0016-5
|
[13] |
HE K, LIU X, LI M, et al. Noninvasive KRAS mutation estimation in colorectal cancer using a deep learning method based on CT imaging[J]. BMC Medical Imaging, 2020, 20(1): 59. doi: 10.1186/s12880-020-00457-4
|
[14] |
SHI R, CHEN W, YANG B, et al. Prediction of KRAS, NRAS and BRAF status in colorectal cancer patients with liver metastasis using a deep artificial neural network based on radiomics and semantic features[J]. American Journal of Cancer Research, 2020, 10(12): 4513−4526.
|
[15] |
赵常红, 郝粉娥, 刘挨师. 胰腺癌定量双能CT碘图与CT灌注参数相关性研究[J]. 放射学实践, 2018,33(6): 578−592.
ZHAO C H, HAO F E, LIU A S. Correlation between quantitative dual-energy CT iodine maps and CT perfusion parameters in patients with pancreatic carcinoma[J]. Radiologic Practice, 2018, 33(6): 578−592. (in Chinese).
|
[16] |
CAO Y, ZHANG G, BAO H, et al. Development of a dual-energy spectral CT based nomogram for the preoperative discrimination of mutated and wild-type KRAS in patients with colorectal cancer[J]. Clinical Imaging, 2021, 69: 205−212. doi: 10.1016/j.clinimag.2020.08.023
|
[17] |
ZHOU X, YI Y, LIU Z, et al. Radiomics-based pretherapeutic prediction of non-response to neoadjuvant therapy in locally advanced rectal cancer[J]. Annals of Surgical Oncology, 2019, 26(6): 1676−1684. doi: 10.1245/s10434-019-07300-3
|
[18] |
LIANG M, CAI Z, ZHANG H, et al. Machine learning-based analysis of rectal cancer MRI radiomics for prediction of metachronous liver metastasis[J]. Academic Radiology, 2019, 26(11): 1495−1504. doi: 10.1016/j.acra.2018.12.019
|
[19] |
XU Y, XU Q, MA Y, et al. Characterizing MRI features of rectal cancers with different KRAS status[J]. BMC Cancer, 2019, 19(1): 1111. doi: 10.1186/s12885-019-6341-6
|
[20] |
OH J E, KIM M J, LEE J, et al. Magnetic Resonance-based texture analysis differentiating KRAS mutation status in rectal cancer[J]. Cancer Research and Treatment, 2020, 52(1): 51−59. doi: 10.4143/crt.2019.050
|
[21] |
CHAN H P, SAMALA R K, HADJIISKI L M, et al. Deep learning in medical image analysis[J]. Advances in Experimental Medicine and Biology, 2020, 1213: 3−21.
|
[22] |
MA Y, WANG J, SONG K, et al. Spatial-frequency dual-branch attention model for determining KRAS mutation status in colorectal cancer with T2-weighted MRI[J]. Computer Methods and Programs in Biomed, 2021, 209: 106311. doi: 10.1016/j.cmpb.2021.106311
|
[23] |
ZHANG G, CHEN L, LIU A, et al. Comparable performance of deep learning-based to manual-based tumor segmentation in KRAS/NRAS/BRAF mutation prediction with MR-based radiomics in rectal cancer[J]. Frontiers in Oncology, 2021, 11: 696706. doi: 10.3389/fonc.2021.696706
|
[24] |
孙丹琦, 王灵华, 李广政, 等. 纹理分析及功能磁共振成像预测直肠癌KRAS基因突变的可行性研究[J]. 临床放射学杂志, 2021,40(5): 924−929.
SUN D Q, WANG L H, LI G Z, et al. To predict KRAS mutation in rectal cancer patients with texture analysis and functional MRI[J]. Journal of Clinical Radiology, 2021, 40(5): 924−929. (in Chinese).
|
[25] |
CUI Y, CUI X, YANG X, et al. Diffusion kurtosis imaging-derived histogram metrics for prediction of KRAS mutation in rectal adenocarcinoma: Preliminary findings[J]. Journal of Magnetic Resonance Imaging, 2019, 50(3): 930−939. doi: 10.1002/jmri.26653
|
[26] |
CAICEDO C, GARCIA-VELLOSO M J, LOZANO M D, et al. Role of 18F-FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41(11): 2058−2065. doi: 10.1007/s00259-014-2833-4
|
[27] |
LOVINFOSSE P, KOOPMANSCH B, LAMBERT F, et al. 18F-FDG PET/CT imaging in rectal cancer: Relationship with the RAS mutational status[J]. The British Journal of Radiology, 2016, 89(1063): 20160212. doi: 10.1259/bjr.20160212
|
[28] |
MAO W, ZHOU J, ZHANG H, et al. Relationship between KRAS mutations and dual time point 18F-FDG PET/CT imaging in colorectal liver metastases[J]. Abdominal Radiology (NY), 2019, 44(6): 2059−2066. doi: 10.1007/s00261-018-1740-8
|
[29] |
LEE J H, KANG J, BAIK S H, et al. Relationship between 18F-fluorodeoxyglucose uptake and V-Ki-Ras2 kirsten rat sarcoma viral oncogene homolog mutation in colorectal cancer patients: Variability depending on C-reactive protein level[J]. Medicine, 2016, 95(1): e2236. doi: 10.1097/MD.0000000000002236
|
[30] |
KIM S J, PAK K, KIM K. Diagnostic performance of 18F-FDG PET/CT for prediction of KRAS mutation in colorectal cancer patients: A systematic review and meta-analysis[J]. Abdominal Radiology (NY), 2019, 44(5): 1703−1711. doi: 10.1007/s00261-018-01891-3
|
[1] | LI Manman, FU Yigang, XIAO Yong, CHEN Wang, FENG Feng, XU Guodong. CT Radiomics Nomogram Prediction for Tumor Deposits and Prognosis in Colorectal Cancer[J]. CT Theory and Applications, 2025, 34(4): 694-702. DOI: 10.15953/j.ctta.2024.055 |
[2] | XU Guodong, CHEN Wang, XIAO Yong, FU Yigang, WANG Manman, Li Manman. Prediction of postoperative disease-free survival in stage I–III colorectal cancer using a CT-based radiomics nomogram[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.043 |
[3] | HU Zilin, WANG Shumei. Preliminary Study of CT Radiomics Analysis on Differentiating Exon 9/11 Mutations of c-kit Gene in Gastrointestinal Stromal Tumors[J]. CT Theory and Applications, 2022, 31(1): 73-79. DOI: 10.15953/j.1004-4140.2022.31.01.08 |
[4] | XUE Ting, FENG Feng. Research Progress of Energy Spectrum CT of Colorectal Cancer[J]. CT Theory and Applications, 2020, 29(6): 751-758. DOI: 10.15953/j.1004-4140.2020.29.06.14 |
[5] | LIU Li-juan, ZHAO Lei, LIU Ai-shi. The Research Progress in Imaging Evaluation of Efficacy of Radiotherapy and Chemotherapy for Central Lung Cancer[J]. CT Theory and Applications, 2018, 27(6): 805-812. DOI: 10.15953/j.1004-4140.2018.27.06.15 |
[6] | YUAN Wei-jun, LI Ping, WANG Yan-mei, LIU Shun-shun, PANG Wei-qiang, SHI Shi-kui. MRI Subtraction Technique Combining DWI for Colorectal Cancer Can Study the Clinical Application of Preoperative Staging Diagnosis[J]. CT Theory and Applications, 2014, 23(6): 1001-1009. |
[7] | BAI Zhi-gang, YANG Xiao-guang, ZHAO Lei, ZHAO Sheng, LIU Ai-shi. Clinical Application and Study of CT Colonography in the Evaluation of Colorectal Cancer[J]. CT Theory and Applications, 2014, 23(4): 611-619. |
[8] | CAO Wu-teng, ZHUANG Qiao-di, LIAN Yan-bang, GONG Jia-ying, XIONG Fei, QIU Jian-ping, ZHANG Bo, YANG Ran, ZHOU Zhi-yang. Liver CT Image Classification of Colorectal Cancer Patients Based on Decision Tree Model[J]. CT Theory and Applications, 2014, 23(2): 275-283. |
[9] | ZHAO Yun, ZHANG Hai-bo, XU Lin, CHEN Lun-gang, WANG Kai-hua, XU Jian. Improved Imaging in Lumbar Facet Joint Degeneration in the Clinical Understanding[J]. CT Theory and Applications, 2012, 21(1): 97-104. |
[10] | ZHAO Tong, ZHANG Jian-mei, CHEN Xiao-bai. Comparative Study of Barium Enema and 16-Multislice Helical CT in Preoperative Diagnosis of Colorectal Carcinoma[J]. CT Theory and Applications, 2009, 18(4): 102-108. |