Citation: | ZHOU Y Q, DAI X B, WANG D M, et al. Automatic Identification of Relationship between Tooth Root and Mandibular Canal Based on One Step Deep Neural Network[J]. CT Theory and Applications, 2023, 32(2): 198-208. DOI: 10.15953/j.ctta.2022.083. (in Chinese). |
[1] |
王东苗, 金致纯, 丁旭, 等. 锥形束CT评估下颌阻生智齿拔除术后下牙槽神经损伤的风险[J]. 南京医科大学学报(自然科学版), 2016,36(10): 1263−1266.
|
[2] |
WANG D M, HE X T, WANG Y L, et al. Topographic relationship between root apex of mesially and horizontally impacted mandibular third molar and lingual plate: Cross-sectional analysis using CBCT[J]. Scientific Reports, 2016, 6(1): 39268−39278. doi: 10.1038/srep39268
|
[3] |
EKERT T, KROIS J, MEINHOLD L, et al. Deep learning for the radiographic detection of apical lesions[J]. Journal of Endodontics, 2019, 45(7): 917−922. doi: 10.1016/j.joen.2019.03.016
|
[4] |
CHANG H J, LEE S J, YONG T H, et al. Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis[J]. Scientific Reports, 2020, 10(1): 7531−7539. doi: 10.1038/s41598-020-64509-z
|
[5] |
ARIJI Y, YANASHITA Y, KUTSUNA S, et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2019, 128(4): 424−430. doi: 10.1016/j.oooo.2019.05.014
|
[6] |
VINAYAHALINGAM S, TONG X, BERGÉ S, et al. Automated detection of third molars and mandibular nerve by deep learning[J]. Scientific Reports, 2019, 9(1): 9007−9014. doi: 10.1038/s41598-019-45487-3
|
[7] |
LEE J, KIM D, JEONG S. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network[J]. Oral Diseases, 2020, 26(1): 152−158. doi: 10.1111/odi.13223
|
[8] |
FUKUDA M, ARIJI Y, KISE Y, et al. Comparison of 3 deep learning neural networks for classifying the relationship between the mandibular third molar and the mandibular canal on panoramic radiographs[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2020, 130(3): 336−343. doi: 10.1016/j.oooo.2020.04.005
|
[9] |
CHOI E, LEE S, JEONG E, et al. Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography[J]. Scientific Reports, 2022, 12(1): 2456−2463. doi: 10.1038/s41598-022-06483-2
|
[10] |
ZWA B, LJA B, SHUAI W. Apple stem/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system[J]. Postharvest Biology and Technology, 2022, 185(2): 111808−111815.
|
[11] |
BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv Preprint, 2020, arXiv: 2004.10934v1.
|
[12] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017: 2117-2125.
|
[13] |
LI H, XIONG P, AN J, et al. Pyramid attention network for semantic segmentation[J]. arXiv Preprint, 2018, arXiv:1805.10180.
|
[14] |
REZATOFIGHI H, TSOI N, GWAK J Y. Generalized Intersection over Union: A metric and a loss for bounding box regression[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019: 658-666.
|
[15] |
COOK N R. Use and misuse of the receiver operating characteristic curve in risk prediction[J]. Circulation, 2007, 115(7): 928−35. doi: 10.1161/CIRCULATIONAHA.106.672402
|
[16] |
BUCKLAND M K, GEY F C. The relationship between recall and precision[J]. Journal of the Association for Information Science & Technology, 2010, 45(1): 12−19.
|
[1] | GAO Fang, ZHANG Yan, LIU Zhe, Zhang Gaosheng, XU Min, ZHENG Ying, LI Jian. Application of a Contrast Enhancement Boost Technique in Cranial Four-dimensional Computed Tomography Angiography[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.122 |
[2] | WANG Xu, YANG Ying, YIN Shuo, WU Ge, DENG Gang, YIN Xiaoming, ZENG Qingyu, DENG Maosong. Study on the Optimal Dosage of Gadolinium Contrast Agent for Lower Extremity Artery CE-MRA Angiography[J]. CT Theory and Applications, 2022, 31(2): 203-210. DOI: 10.15953/j.ctta.2021.033 |
[3] | LIN Guansheng, DONG Xishan, MA Zhoupeng, WANG Longting. Applicative Study of Double Low Dose Combined with Retrospective ECG Gating in Bronchial Artery CT Angiography[J]. CT Theory and Applications, 2021, 30(1): 91-98. DOI: 10.15953/j.1004-4140.2021.30.01.09 |
[4] | WEN Zhi-qin, MO Xu-kai, SHI Zhang-zheng. Study on Low Contrast Agent Injection Adopted in 320-slice CT Coronary Angiography[J]. CT Theory and Applications, 2018, 27(6): 693-699. DOI: 10.15953/j.1004-4140.2018.27.06.02 |
[5] | YANG Xiu-jun, CHENG Fu-rong, LI Wei. CT Angiography in Assessment of Arterial Supply of the Femoral Head[J]. CT Theory and Applications, 2011, 20(4): 565-571. |
[6] | BAN Run-yi, WU Ge, DENG Gang, HUO Jian-wei, DENG Mao-song, ZENG Qing-yu. Application of 64 Multi-detector Helical CT Angiography in Evaluation of Aortic Dissection[J]. CT Theory and Applications, 2007, 16(1): 60-64. |
[7] | ME Gang, SUN Jian-nan, LIU Wei-li, LI Xue-yan, CHEN Xiu-mei. Application of 16-slice Spiral CT Angiography in Diagnosis of Upper Extremity Arterial Disease[J]. CT Theory and Applications, 2006, 15(4): 26-29. |
[8] | LIU Ying, ZHANG Xiu-li, ME Gang. Application of 16-slice Spiral CT Angiography(CTA) with Tracking Technology of Contrast Medium in lower extremity[J]. CT Theory and Applications, 2006, 15(3): 31-34. |
[9] | LIU Ying, SUN Jian-nan, ZHANG Xiu-li, ME Gang. Research of 16-slice Spiral CT Angiography in Diagnosis of Carotid Body Tumor and Choice of Modus Operandi[J]. CT Theory and Applications, 2006, 15(2): 56-59. |
[10] | YAO Gang, SUN Jian-nan, LIU Ying, ZHANG Xiu-li, CHEN Xiu-mei. Feasibility of 16-slice helical CT Angiography with low dose Contrast Agent in the Lower Extremity[J]. CT Theory and Applications, 2005, 14(4): 24-28. |