ISSN 1004-4140
CN 11-3017/P
LIU M K, LI X P, ZHANG Y N, et al. Study on the staging of primary lower extremity lymphedema based on calf soft-tissue thickness measurement by MRI[J]. CT Theory and Applications, 2022, 31(4): 479-487. DOI: 10.15953/j.ctta.2022.100. (in Chinese).
Citation: LIU M K, LI X P, ZHANG Y N, et al. Study on the staging of primary lower extremity lymphedema based on calf soft-tissue thickness measurement by MRI[J]. CT Theory and Applications, 2022, 31(4): 479-487. DOI: 10.15953/j.ctta.2022.100. (in Chinese).

Study on the Staging of Primary Lower Extremity Lymphedema Based on Calf Soft-tissue Thickness Measurement by MRI

More Information
  • Received Date: May 25, 2022
  • Revised Date: June 30, 2022
  • Accepted Date: July 05, 2022
  • Available Online: July 12, 2022
  • Published Date: July 31, 2022
  • Objective: To investigate the value of MRI-based measurement of calf soft-tissue thickness in assessing the clinical staging of primary lower extremity lymphedema (PLEL). Methods: The clinical and MR imaging data of 90 patients diagnosed with PLEL in our hospital were retrospectively collected, and all patients underwent bilateral lower limb MR examinations. Short Time Inversion Recovery (STIR) sequence was used to measure the total soft tissue thickness (T), musculoskeletal thickness (M) and subcutaneous soft tissue thickness (S) of bilateral lower legs, and the difference between T and S of bilateral lower legs (DT, DS) was calculated respectively. Patients were classified into stages Ⅰ, Ⅱ and Ⅲ with reference to the clinical staging criteria of the International Lymphatic Association 2020 and our lymphatic surgery department for lower limb lymphedema, excluding stage 0. One-way ANOVA was used to compare calf soft tissue thickness among different clinical stages, Spearman correlation was used to analyze the correlation between calf soft tissue thickness and clinical stage, and ROC curves were used to evaluate the efficacy of calf soft tissue thickness in discriminating clinical stage. Results: The differences among T, S, DT and DS of the three stages were statistically significant, while there was no statistical difference among M; when comparing two by two in each subperiod, T, S, DT and DS were statistically different between stage Ⅰ and Ⅱ and stage Ⅰ and Ⅲ, while there was no statistical difference between stage II and III. The correlation between DT (r=0.750) and DS (r=0.772) and clinical stage was significantly greater than that between T (r=0.669) and S (r=0.734), with DS showing the highest correlation with clinical stage; there was no significant correlation between M and clinical stage. ROC curves showed that the AUC values for each parameter to identify stage Ⅰ and Ⅱ were greater than those to identify stage Ⅱ and Ⅲ. The AUC value of DS (AUC=0.945) demonstrated the highest area under the curve (AUC) among all parameters to identify stage Ⅰ and stage Ⅱ. Conclusion: MRI soft-tissue thickness measurement of calf can be used as a quantitative adjunct in the clinical staging of unilateral PLEL, and for patients with unilateral PLEL, we recommend DS as the best thickness index to differentiate stage Ⅰ from Ⅱ lymphedema.
  • [1]
    VIGNES S. Lymphedema: From diagnosis to treatment[J]. La Revue de Medecine Interne, 2017, 38(2): 97−105. doi: 10.1016/j.revmed.2016.07.005
    [2]
    王鹤玮, 贾杰. 乳腺癌术后上肢淋巴水肿的检查与评估研究进展[J]. 中国康复理论与实践, 2017,23(9): 1001−1006. doi: 10.3969/j.issn.1006-9771.2017.09.003

    WANG H W, JIA J. Advance in examination and evaluation of upper limb lymphedema after breast cancer surgery (review)[J]. Chinese Journal of Rehabilitation Theory and Practice, 2017, 23(9): 1001−1006. (in Chinese). doi: 10.3969/j.issn.1006-9771.2017.09.003
    [3]
    TASSENOY A, de STRIJCKER D, ADRIAENSSENS N, et al. The use of noninvasive imaging techniques in the assessment of secondary lymphedema tissue changes as part of staging lymphedema[J]. Lymphatic Research and Biology, 2016, 14(3): 127−133. doi: 10.1089/lrb.2016.0011
    [4]
    LIU N F, YAN Z X, WU X F, et al. Magnetic resonance lymphography demonstrates spontaneous lymphatic disruption and regeneration in obstructive lymphedema[J]. Lymphology, 2013, 46(2): 56−63.
    [5]
    Executive Committee of the International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema: 2020 Consensus Document of the International Society of Lymphology[J]. Lymphology, 2020, 53(1): 3−19.
    [6]
    BRUNELLE C L, TAGHIAN A G. Lymphoedema screening: Setting the standard[J]. British Journal of Cancer, 2020, 123(1): 1−2. doi: 10.1038/s41416-020-0848-0
    [7]
    CELLINA M, MARTINENGHI C, PANZERI M, et al. Noncontrast MR lymphography in secondary lower limb lymphedema[J]. Journal of Magnetic Resonance Imaging, 2021, 53(2): 458−466. doi: 10.1002/jmri.27328
    [8]
    王丽, 李苏芹, 华小兰, 等. 妇科恶性肿瘤术后下肢淋巴水肿MRI分期研究[J]. 实用放射学杂志, 2017,33(3): 343−348. doi: 10.3969/j.issn.1002-1671.2017.03.006

    WANG L, LI S Q, HUA X L, et al. Cross-sectional areas of calf soft tissue measured with MRI as a new method for staging gynecologic oncology-related extremity lymphedema[J]. Journal of Practical Radiology, 2017, 33(3): 343−348. (in Chinese). doi: 10.3969/j.issn.1002-1671.2017.03.006
    [9]
    ARRIVÉ L, DERHY S, DAHAN B, et al. Primary lower limb lymphoedema: Classification with non-contrast MR lymphography[J]. European Radiology, 2018, 28(1): 291−300. doi: 10.1007/s00330-017-4948-z
    [10]
    KIM G, SMITH M P, DONOHOE K J, et al. MRI staging of upper extremity secondary lymphedema: Correlation with clinical measurements[J]. European Radiology, 2020, 30(8): 4686−4694. doi: 10.1007/s00330-020-06790-0
    [11]
    GRADA A A, PHILLIPS T J. Lymphedema: Pathophysiology and clinical manifestations[J]. Journal of the American Academy of Dermatology, 2017, 77(6): 1009−1020. doi: 10.1016/j.jaad.2017.03.022
    [12]
    DAYAN J H, WISER I, VERMA R, et al. Regional patterns of fluid and fat accumulation in patients with lower extremity lymphedema using magnetic resonance angiography[J]. Plastic and Reconstructive Surgery, 2020, 145(2): 555−563. doi: 10.1097/PRS.0000000000006520
    [13]
    ZARRAD M, DUFLOS C, MARIN G, et al. Skin layer thickness and shear wave elastography changes induced by intensive decongestive treatment of lower limb lymphedema[J]. Lymphatic Research and Biology, 2022, 20(1): 17−25.
    [14]
    LU Q, LI Y, CHEN T W, et al. Validity of soft-tissue thickness of calf measured using MRI for assessing unilateral lower extremity lymphoedema secondary to cervical and endometrial cancer treatments[J]. Clinical Radiology, 2014, 69(12): 1287−1294. doi: 10.1016/j.crad.2014.08.011
    [15]
    TASSENOY A, de MEY J, de RIDDER F, et al. Postmastectomy lymphoedema: Different patterns of fluid distribution visualised by ultrasound imaging compared with magnetic resonance imaging[J]. Physiotherapy, 2011, 97: 234−243. doi: 10.1016/j.physio.2010.08.003
  • Related Articles

    [1]WANG Xu, YANG Ying, YIN Shuo, WU Ge, DENG Gang, YIN Xiaoming, ZENG Qingyu, DENG Maosong. Study on the Optimal Dosage of Gadolinium Contrast Agent for Lower Extremity Artery CE-MRA Angiography[J]. CT Theory and Applications, 2022, 31(2): 203-210. DOI: 10.15953/j.ctta.2021.033
    [2]LI Gao-yang, ZHANG Dan, LV Liang, XING Yuan-yuan, WANG Ning, CHANG Ying-wei. Comparison of Image Quality of Iliac Vein in Lower Extremity Vein Direct Imaging by Multi-slice Spiral CT with Different Injection Rates[J]. CT Theory and Applications, 2018, 27(3): 401-409. DOI: 10.15953/j.1004-4140.2018.27.03.14
    [3]HAN Xin, TIAN Feng, YU Sheng-feng. Value of Multi-detector Row Computed Tomography on Preoperative T Staging of Gastric Cancer[J]. CT Theory and Applications, 2018, 27(2): 249-255. DOI: 10.15953/j.1004-4140.2018.27.02.13
    [4]XU Guan-zhen, CHEN Yu-feng, ZOU Wen-yuan, CAO Yang, HU Jiu-min, HOU Ming-wei, XIONG Liang, TONG Cheng-wen, JI Lei, YANG Qian-qian, ZHOU Lin, CAO Min. MSCT in TNM Staging and Surgical Pathology of Gastric Cancer Control Study[J]. CT Theory and Applications, 2015, 24(3): 429-435. DOI: 10.15953/j.1004-4140.2015.24.03.13
    [5]HONG Liang, YI Xu, YI Hong-bing. The Value Evaluation of Multi-slice Spiral CT in the Main Pulmonary Artery Hemodynamics of the Different Stages of Patients with Pneumoconiosis[J]. CT Theory and Applications, 2015, 24(2): 313-318. DOI: 10.15953/j.1004-4140.2015.24.02.17
    [6]YUAN Wei-jun, LI Ping, WANG Yan-mei, LIU Shun-shun, PANG Wei-qiang, SHI Shi-kui. MRI Subtraction Technique Combining DWI for Colorectal Cancer Can Study the Clinical Application of Preoperative Staging Diagnosis[J]. CT Theory and Applications, 2014, 23(6): 1001-1009.
    [7]SUN Xiao-li, WANG Ren-gui, ZHANG Fu-xian, YANG Lei, LI Hai-lei, DUAN Yong-li, ZHAO Jun, FU Yan. The Value of 256iCT Angiography in Lower Extremity Arteriosclerotic Occlusive Disease[J]. CT Theory and Applications, 2012, 21(3): 535-541.
    [8]ZHANG Yi, DENG Li-gang, JIN Er-hu, LIANG Yu-ting, GUAN Wei. Clinical Application of MR Angiography of Whole Lower Extremity Artery[J]. CT Theory and Applications, 2010, 19(3): 75-81.
    [9]LI Da-sheng, SUN Yong-guang. CT Angiography of Lower Extremities and Aortoiliac System Evaluation by Multi-detector row helical CT[J]. CT Theory and Applications, 2005, 14(3): 61-64.
    [10]WANG Fu-qi. CT Staging of Renal Cell Carcinoma:Analysis of 41 Cases[J]. CT Theory and Applications, 2002, 11(3): 23-25.
  • Cited by

    Periodical cited type(2)

    1. 刘梦珂,张怡梦,张妍,李兴鹏,郝琪,张晓杰,徐井旭,黄陈翠,王仁贵. 基于STIR-MRI的影像组学模型评估原发性下肢淋巴水肿的临床分期. 放射学实践. 2024(04): 517-522 .
    2. 刘梦珂,田宇驰,李滨,李兴鹏,张怡梦,张晓杰,冯吉雪,王仁贵. 基于阈值分割法的原发性下肢淋巴水肿成分分析初步研究. 临床放射学杂志. 2024(07): 1181-1186 .

    Other cited types(0)

Catalog

    Article views (321) PDF downloads (20) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return