ISSN 1004-4140
CN 11-3017/P
YAN J, ZHANG L S, HONG H T, et al. Application of Ambient Noise and Dense Seismic Array Imaging Techniques in Goaf Detection Beneath Coal Mines at Haerwusu[J]. CT Theory and Applications, 2023, 32(4): 461-470. DOI: 10.15953/j.ctta.2023.023. (in Chinese).
Citation: YAN J, ZHANG L S, HONG H T, et al. Application of Ambient Noise and Dense Seismic Array Imaging Techniques in Goaf Detection Beneath Coal Mines at Haerwusu[J]. CT Theory and Applications, 2023, 32(4): 461-470. DOI: 10.15953/j.ctta.2023.023. (in Chinese).

Application of Ambient Noise and Dense Seismic Array Imaging Techniques in Goaf Detection Beneath Coal Mines at Haerwusu

More Information
  • Received Date: February 17, 2023
  • Revised Date: March 21, 2023
  • Accepted Date: March 22, 2023
  • Available Online: April 23, 2023
  • Published Date: July 30, 2023
  • The unknown goaf in coal mines poses a potential danger to coal mine safety production. Hence, detecting its location and shape is very important to ensure coal mine safety production. Although numerous methods are currently available for detecting goafs, they are expensive, inefficient, and have a long cycle. In recent years, with the rapid development of dense array observation technology, the ambient noise imaging technique has been widely used in near surface structure detection. In this study, we used the dense array observation based on the nodal seismometers and ambient noise imaging technology for goaf detection in the Haerwusu open-pit coal mine. We deployed 145 stations with 16 m spacing for 10 consecutive days. Our results show that: (1) The VS anomalies were well constrained using the ambient noise imaging and ESPAC methods. (2) Potential locations of the goaf were detected based on the distribution of the low VS regions. After verification by drilling, the locations showed accurate correspondence with the positions revealed by the borehole, which proves the validity of this method for goaf detection. Our study shows that the dense seismic array technique for ambient noise imaging is an economic and effective means of conducting goaf detection in open-pit mines and the technique has a wide range of applications.
  • [1]
    韩连生, 雷洪才. 采空区的危害及探测方法分析[J]. 价值工程, 2018,37(32): 240−241.
    [2]
    郭爱萍. 煤矿采空区的危害及防治[J]. 内蒙古煤炭经济, 2014,(10): 88−89. doi: 10.3969/j.issn.1008-0155.2014.10.053
    [3]
    刘爱兄, 祁金保, 张文罡. 哈尔乌素露天煤矿过东宝煤矿采空区技术研究[C]//第十届全国采矿学术会议, 2015.
    [4]
    薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018,33(5): 2187−2192. doi: 10.6038/pg2018BB0294

    XUE G Q, PAN D M, YU J C. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018, 33(5): 2187−2192. (in Chinese). doi: 10.6038/pg2018BB0294
    [5]
    李晓斌. 物探方法在煤矿采空区的应用[J]. 中国矿业, 2011,20(S): 196−200.

    LI X B. The applying geophysical exploration for gob area of coal minus[J]. China Mining Magazine, 2011, 20(S): 196−200. (in Chinese).
    [6]
    徐胜, 唐科远. 物探技术在朱仙庄煤矿采空区探测中的应用[J]. 地质找矿论丛, 2020, 35(4): 481-486.

    XU S, TANG K Y. Application of geophysical technology to the detection of goaf-settlement area in Zhuxianzhuang coal mine, Anhui province[J]. Contributions to Geology and Mineral Resources Research, 2020, 35(4): 481-486. (in Chinese).
    [7]
    李万伦, 田黔宁, 刘素芳, 等. 城市浅层地震勘探技术进展[J]. 物探与化探, 2018,42(4): 653−661.

    LI W L, TIAN Q N, LIU S F, et al. Progress in the study of shallow seismic exploration technology in urban areas[J]. Geophysical and Geochemical Exploration, 2018, 42(4): 653−661. (in Chinese).
    [8]
    王康东. 基于地震成像技术的矿山采空区探测研究和应用[D]. 合肥: 中国科学技术大学, 2022.

    WANG K D. Research and application of mine goaf detection by seismic imaging methods[D]. Hefei: University of Science and Technology of China, 2022. (in Chinese).
    [9]
    于淼, 林君. 天然源面波在采空区探测中的应用[J]. 煤炭技术, 2013,12(44): 85−87.

    YU M, LIN J. Application of natural source surface waves in goaf survey[J]. Coal Science and Technology, 2013, 12(44): 85−87. (in Chinese).
    [10]
    马丽, 金溪, 贺正东. 微动物探方法探测采空区[J]. 中国煤炭地质, 2013, 25(5): 50-54.

    MA L, JIN X, HE Z D. Gob area detection through microtremor surveying[J]. Coal Geology of China, 2013, 25(5): 50-54. (in Chinese).
    [11]
    李成. 基于背景噪声面波的浅层地壳结构成像: 方法研究及其应用[D]. 合肥: 中国科学技术大学, 2019.

    LI C. Imaging shallow crust structure from ambient noise surface wave: Methodology and applications[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese).
    [12]
    赵尹桃, 岳之峰. 哈尔乌素露天煤矿新揭露地堑构造与F3逆断层的关系研究[J]. 煤矿安全, 2015,46(9): 31−34.

    ZHAO Y T, YUE Z F. Study on relationship between new disclosure graben structure and F3 reverse fault in haerwusu open-pit mine[J]. Safety in Coal Mines, 2015, 46(9): 31−34. (in Chinese).
    [13]
    王娟娟, 姚华建, 王伟涛, 等. 基于背景噪声成像方法的新疆呼图壁储气库地区近地表速度度结构研究[J]. 地球物理学报, 2018,61(11): 4436−4447. doi: 10.6038/cjg2018M0025

    WANG J J, YAO H J, WANG W T, et al. Study of the near-surface velocity structure of the Hutubi gas storage area in Xinjiang from ambient noise tomography[J]. Chinese Journal of Geophysics, 2018, 61(11): 4436−4447. (in Chinese). doi: 10.6038/cjg2018M0025
    [14]
    李娜, 何正勤, 叶太兰, 等. 天然源面波勘探台阵对比实验[J]. 地震学报, 2015,37(2): 323−334. doi: 10.11939/j.issn:0253-3782.2015.02.012

    LI N, HE Z Q, YE T L, et al. Test for comparison of array layout in natural source surface wave exploration[J]. Acta Seismologica Sinica, 2015, 37(2): 323−334. (in Chinese). doi: 10.11939/j.issn:0253-3782.2015.02.012
    [15]
    赵东. 被动源面波勘探方法与应用[J]. 物探与化探, 2010,34(6): 759−764.

    ZHAO D. Passive surface waves: Methods and applications[J]. Geophysical and Geochemical Exploration, 2010, 34(6): 759−764. (in Chinese).
    [16]
    孙飞. 基于微动探测的煤矿采空区勘察及其稳定性评价研究[J]. 能源与环保, 2022,44(1): 159−164.

    SUN F. Research on mine goaf investigation and stability evaluation based on micro-motion detection[J]. China Energy and Environmental Protection, 2022, 44(1): 159−164. (in Chinese).
    [17]
    煤炭科学技术研究院有限公司. CK52-1077采空区探测报告[R]. 2022.
    [18]
    煤炭科学技术研究院有限公司. CK68-1085采空区探测报告[R]. 2022.
  • Related Articles

    [1]WANG He, CHEN Zonggang, ZHANG Mingcai, WANG Yanqi, CHE Ziqiang. Application of Micro-tremor Array Detection in Site Investigation for Pumped Storage Project[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.192
    [2]TANG Su, WU Yinting, XING Hao, WEI Yongshan, WANG Xuan. Application of Comprehensive Geophysical Prospecting Method in Goaf Detection[J]. CT Theory and Applications, 2023, 32(6): 713-721. DOI: 10.15953/j.ctta.2022.176
    [3]WEI Yunong, SHI Zhanjie, YU Tianxiang. Application of Joint Inversion of Different Electrode Arrays in Ancient Mausoleum Detection[J]. CT Theory and Applications, 2022, 31(3): 280-292. DOI: 10.15953/j.ctta.2022.008
    [4]CHE Chuanqiang, CHEN Bo, XIE Mingzuo, YAN Baofeng, WANG Qiong, ZHANG Jie, WAN Wenxuan. Application of Integrated Geophysics Method in Goaf Detection Under High Voltage Overhead Lines[J]. CT Theory and Applications, 2022, 31(1): 23-31. DOI: 10.15953/j.1004-4140.2022.31.01.03
    [5]ZHANG Zhao, ZHANG Longfei, DUAN Gang, CHEN Zhongshan, YUAN Xiaowei, ZHAO Shifeng, ZHANG Dengliang, TIAN Jinrui. Seismic Response Characteristics of Coal Goaf Based on Forward Modeling[J]. CT Theory and Applications, 2021, 30(3): 291-300. DOI: 10.15953/j.1004-4140.2021.30.03.02
    [6]WANG Qing, SHI Lei, LAN Yunfei, LI Wengang, WANG Peng. Detection of Mine Tunnels in Inclined Coal Seam of Small Coal Bearing Basin Using TEM[J]. CT Theory and Applications, 2020, 29(5): 576-583. DOI: 10.15953/j.1004-4140.2020.29.05.08
    [7]LI Wei, WANG Xin-wen, ZENG Fang-lu, HOU Yan-wei. Application of TEM on Detecting Goaf of Coal Mine without Water in Complex Terrains[J]. CT Theory and Applications, 2013, 22(3): 455-462.
    [8]YU Chuan-tao, LIU Hong-fu, YU Yan-mei, MA Zhi-fei. Application of CSAMT Method in Buried Fault Detecting in Coal Mine[J]. CT Theory and Applications, 2010, 19(1): 28-33.
    [9]CHENG Miao, LI Zhen-yu, WANG Peng. Application and Effect of Combination of SNMR and TEM in Detecting Groundwater[J]. CT Theory and Applications, 2006, 15(2): 6-12.
    [10]LI Qing-lin, XIE Ru-yi, WANG Lan-fu, QIN Jian-zeng, ZHANG Jian-zhi. Resistivity Tomography and Calculation of Stability in Surveying Excavated-Empty-Area and Inclined Shaft Tunnels in Coal Mine[J]. CT Theory and Applications, 2005, 14(3): 1-7.
  • Cited by

    Periodical cited type(2)

    1. 涂立冬,李雅萍. 岩土勘查技术在盐矿绿色矿山建设中的应用初探. 盐科学与化工. 2025(04): 9-12 .
    2. 杨兆林,潘懿,白旭晨,刘禄平. 露天铁矿采空区隐蔽致灾普查与防治措施应用研究. 矿业研究与开发. 2024(09): 74-81 .

    Other cited types(2)

Catalog

    Article views (507) PDF downloads (88) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return