ISSN 1004-4140
CN 11-3017/P
WANG H, CHEN Z G, ZHANG M C, et al. Application of Micro-tremor Array Detection in Site Investigation for Pumped Storage Project[J]. CT Theory and Applications, xxxx, x(x): 1-11. DOI: 10.15953/j.ctta.2024.192. (in Chinese).
Citation: WANG H, CHEN Z G, ZHANG M C, et al. Application of Micro-tremor Array Detection in Site Investigation for Pumped Storage Project[J]. CT Theory and Applications, xxxx, x(x): 1-11. DOI: 10.15953/j.ctta.2024.192. (in Chinese).

Application of Micro-tremor Array Detection in Site Investigation for Pumped Storage Project

More Information
  • Received Date: September 05, 2024
  • Revised Date: December 18, 2024
  • Accepted Date: December 31, 2024
  • Available Online: February 11, 2025
  • In recent years, advancements in geophysical instruments, equipment, and sensitivity have enabled the widespread application of micro-tremor array detection, a natural source geophysical method, in engineering exploration and shallow geological surveys. In this study, we aimed to classify the bedrock relief interface of a pumped storage project site, determine the thickness of its overlying layer, and identify hidden fault structures in the working area. According to the real working conditions at the site, micro-tremor array detection technology featuring strong anti-interference ability and high efficiency and speed was selected. The theoretical simulation results showed that the dispersion curves obtained using a linear array and triangular nested array were consistent with the theoretically calculated values. Therefore, a linear array method was adopted to detect two survey lines arranged in the working area. A data collection method was adopted to obtain abundant geological information in the shallow layer to accomplish high-precision detection of the shallow surface. Based on the SPAC method, the phase–velocity dispersion curves of the fundamental Rayleigh waves were extracted from each measurement point of the two survey lines. The S-wave velocity structural profiles of the two survey lines were obtained via inversion interpolation. The detection results indicated that the thickness of the covering layer in the working area was basically consistent with the verification results of the drilling data, and no shallow geological bodies were found. This provides reliable shallow geological information for the construction of pumped storage projects.

  • [1]
    李应战, 计鹏, 张德强, 等. 综合物探技术在城市轨道交通不良地质体探测中的应用分析[J]. 工程地球物理学报, 2023, 20(04): 471-479. DOI: 10.3969/j.issn.1672-7940.2023.04.005.

    LI Y Z, JI P, ZHANG D Q, ET AL. Application and analysis of comprehensive geophysical prospecting technology in the detection of poor geological bodies in urban rail transit[J]. Chinese Journal of Engineering Geophysics, 2023, 20(04): 471-479. DOI: 10.3969/j.issn.1672-7940.2023.04.005. (in Chinese).
    [2]
    陈宣凝, 韩复兴, 高正辉, 等. 面波勘探技术研究进展[J]. CT理论与应用研究, 2023, 32(6): 815-835. DOI: 10.15953/j.ctta.2023.089.

    CHEN X N, HAN F X, GAO Z H, ET AL. Research advancements in surface wave exploration[J]. CT Theory and Applications, 2023, 32(6): 815-835. DOI: 10.15953/j.ctta.2023.089.
    [3]
    晏雁. 微动勘探技术在煤矿隐蔽致灾地质因素探测中的应用[J]. 工程地球物理学报, 2024, 21(4): 578-586. DOI: 10.3969/j.issn.1672-7940.2024.04.004.

    YUAN Y. Application of micro-motion exploration technology in the detection of hidden disaster-causing geological factors in coal mines[J]. Chinese Journal of Engineering Geophysics, 2024, 21(4): 578-586. DOI: 10.3969/j.issn.1672-7940.2024.04.004. (in Chinese).
    [4]
    王顺, 廖武林, 姚运生, 等. 测线方位对微动线形台阵探测效果影响研究[J]. 地震工程学报, 2023, 45(2): 483-490.

    WANG S, LIAO Q L, YAO Y S, ET AL. Research on the influence of line orientation on the detection effect of micro-motion linear array[J]. Journal of Earthquake Engineering, 2023, 45(2): 483-490. (in Chinese).
    [5]
    SCHERBAUM F, HINZEN K G, OHRNBERGER M. Determination of shallow shear wave velocity profiles in the cologne, germany area using ambient vibrations[J]. Geophysical Journal International, 2003, 152(3): 597-612. DOI: 10.1046/j.1365-246X.2003.01856.x.
    [6]
    丁连靖, 冉伟彦. 天然源面波频率-波数法的应用[J]. 物探与化探, 2005(2): 138-141.

    DING L J, RAN W Y. Application of natural source surface wave frequency-wavenumber method[J]. Geophysical and Geochemical Exploration, 2005(2): 138-141. (in Chinese).
    [7]
    叶太兰. 微动台阵探测技术及其应用研究[J]. 中国地震, 2004(1): 47-52. DOI: 10.3969/j.issn.1001-4683.2004.01.005.

    YE T L. Research on Micro-motion Array Detection Technology and Its Application[J]. Earthquake in China, 2004(1): 47-52. DOI: 10.3969/j.issn.1001-4683.2004.01.005. (in Chinese).
    [8]
    李传金, 徐佩芬, 凌甦群. 微动勘探法圆形阵列台站数量和分布方式研究[J]. 科学技术与工程, 2016, 16(7): 27-30+46. DOI: 10.3969/j.issn.1671-1815.2016.07.004.

    LI C J, XU P F, LING S Q. Study on Station Number and Arrangement of Circle Array in Microtremor Survey Method[J]. Science Technology and Engineering, 2016, 16(7): 27-30+46. DOI: 10.3969/j.issn.1671-1815.2016.07.004. (in Chinese).
    [9]
    杜亚楠, 徐佩芬, 凌甦群. 土石混合滑坡体微动探测: 以衡阳拜殿乡滑坡体为例[J]. 地球物理学报, 2018, 61(4): 1596-1604. DOI: 10.6038/cjg2018L0057.

    DU Y N, XU P F, LING S Q. Microtremor detection of soil-rock mixed landslide: A case study of landslide in Baidian Township, Hengyang[J]. Journal of Geophysics, 2018, 61(4): 1596-1604. DOI: 10.6038/cjg2018L0057. (in Chinese).
    [10]
    李井冈, 谢朋, 王秋良, 等. 不同台阵形式对微动探测结果的影响[J]. 大地测量与地球动力学, 2020, 40(1): 98-103.

    LI J G, XIE P, WANG Q L, ET AL. The influence of different array forms on the results of micromotion detection[J]. Geodesy and Geodynamics, 2020, 40(1): 98-103. (in Chinese).
    [11]
    李娜, 何正勤, 叶太兰, 等. 天然源面波勘探台阵对比试验[J]. 地震学报, 2015, 37(2): 323-334. DOI: 10.11939/j.issn:0253-3782.2015.02.012.

    LI N, HE Z Q, YE T L, ET AL. Comparative test of natural source surface wave exploration array[J]. Earthquake Science, 2015, 37(2): 323-334. DOI: 10.11939/j.issn:0253-3782.2015.02.012. (in Chinese).
    [12]
    AKI K. Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35: 415-456.
    [13]
    AKI K, CHOUET B. Origin of coda wave: Source, attenuation and scattering effects[J]. Journal of Geophysical Research, 1975, 80(23): 3322-3342. DOI: 10.1029/JB080i023p03322.
    [14]
    张继伟, 谭慧. 可控源音频大地电磁和微动资料的拟二维联合反演[J]. 物探与化探, 2024, 48(4): 1094-1102.

    ZHANG J W, TAN H. Quasi-two-dimensional joint inversion of controllable source audio, magnetotelluric and micro-tremor data[J]. Geophysical and Geochemical Exploration, 2024, 48(4): 1094-1102. (in Chinese).
    [15]
    陈实, 牛辉, 陶鹏飞, 等. 微动技术台阵探测能力分析与应用[J]. 物探化探计算技术, 2023, 45(6): 738-746. DOI: 10.3969/j.issn.1001-1749.2023.06.06.

    CHEN S, NIU H, TAO P F, ET AL. Analysis and Application of Array Detection Capability of Micro Motion Technology[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2023, 45(6): 738-746. DOI: 10.3969/j.issn.1001-1749.2023.06.06. (in Chinese).
    [16]
    徐佩芬, 侍文, 凌苏群, 等. 二维微动剖面探测“孤石”: 以深圳地铁7号线为例[J]. 地球物理学报, 2012, 55(6): 2120-2128. DOI: 10.6038/j.issn.0001-5733.2012.06.034.

    XU P F, SHI W, LING S Q, ET AL. Two-dimensional micro-motion profile detection of "solitary rock": A case study of Shenzhen Metro Line 7[J]. Journal of Geophysics, 2012, 55(6): 2120-2128. DOI: 10.6038/j.issn.0001-5733.2012.06.034. (in Chinese).
    [17]
    徐宗博. 高频背景噪声波场模拟与面波成像[D]. 北京: 中国地质大学, 2016.

    XU Z B. High-frequency background noise field simulation and surface wave imaging[D]. Beijing: China University of Geosciences, 2016. (in Chinese).
    [18]
    赵雪然. 城市地下空间勘探中的微动技术研究[D]. 长春: 吉林大学, 2020.

    ZHAO X R. Research on micro-motion technology in urban underground space exploration[D]. Changchun: Jilin University, 2020. (in Chinese).
    [19]
    李子伟, 刘学伟. 近地表勘探中炮检距对瑞利波频散成像效果的影响[J]. 物探与化探, 2013, 37(6): 1085-1091.

    LI Z W, LIU X W. Effect of cannon ranging on Rayleigh wave dispersion imaging effect in near-surface exploration[J]. Geophysical and Geochemical Exploration, 2013, 37(6): 1085-1091. (in Chinese).
    [20]
    金聪, 杨文海, 罗登贵, 等. 面波频散曲线提取方法对比分析[J]. 地球物理学进展, 2016, 31(6): 2735-2742. DOI: 10.6038/pg20160651.

    JIN C, YANG W H, LUO D G, ET AL. Comparative analysis of surface wave dispersion curve extraction methods[J]. Progress in Geophysics, 2016, 31(6): 2735-2742. DOI: 10.6038/pg20160651. (in Chinese).
    [21]
    鲁杏, 郭信, 罗传华, 等. 微动探测在铜陵某金矿采空区勘查中的应用[J]. 工程地球物理学报, 2023, 20(1): 50-55. DOI: 10.3969/j.issn.1672-7940.2023.01.007.

    LU X, GUO X, LUO C H, ET AL. Application of micro-motion detection in the exploration of goaf of a gold mine in Tongling[J]. Chinese Journal of Engineering Geophysics, 2023, 20(1): 50-55. DOI: 10.3969/j.issn.1672-7940.2023.01.007. (in Chinese).
    [22]
    应恒成, 李洪强, 张玉敏, 等. 基于SPAC法探测松科二井深层地热储水构造[J]. 地球学报, 2022, 43(6): 909-916. DOI: 10.3975/cagsb.2022.053001.

    YING H C, LI H Q, ZHANG Y M, ET AL. Based on SPAC method, the deep geothermal water storage structure of Songke No. 2 Well was detected[J]. Geoscience Journal, 2022, 43(6): 909-916. DOI: 10.3975/cagsb.2022.053001. (in Chinese).
    [23]
    徐义贤, 罗银河. 噪声地震学方法及其应用[J]. 地球物理学报, 2015, 58(8): 2618-2636. DOI: 10.6038/cjg20150803.

    XU Y X, LUO Y H. Noise seismological methods and their applications[J]. Chinese Journal of Geophysics, 2015, 58(8): 2618-2636. DOI: 10.6038/cjg20150803. (in Chinese).
    [24]
    栾明龙, 刘增, 刘爱友, 等. 天然源面波技术在城市工程勘察中的应用效果分析[J]. CT理论与应用研究, 2020, 29(6): 651-662. DOI: 10.15953/j.1004-4140.2020.29.06.03.

    LUAN M L, LIU Z, LIU A Y, ET AL. The application of natural source surface wave technology in urban engineering investigation[J]. CT Theory and Applications, 2020, 29(6): 651-662. DOI: 10.15953/j.1004-4140.2020.29.06.03.
    [25]
    龙斌, 张军, 李宏伟. 基于微动和探地雷达的城市轨道交通岩溶探测研究[J]. 现代雷达, 2023, 45(12): 40-46.

    LONG B, ZHANG J, LI H W. Research on karst detection of urban rail transit based on micro-motion and ground penetrating radar[J]. Modern radar, 2023, 45(12): 40-46. (in Chinese).
    [26]
    李雪燕, 陈晓非, 等. 城市微动高阶面波在浅层勘探中的应用: 以苏州河地区为例[J]. 地球物理学报, 2020, 63(1): 247-255. DOI: 10.6038/cjg2020N0202.

    LI X Y, CHEN X F, ET AL. Application of urban micro-motion high-order surface waves in shallow exploration: A case study of Suzhou Creek[J]. Chinese Journal of Geophysics, 2020, 63(1): 247-255. DOI: 10.6038/cjg2020N0202. (in Chinese).
    [27]
    李正波. 频率贝塞尔变换法提取地震记录中的频散信息[D]. 合肥: 中国科学技术大学, 2020.

    LI Z B. The frequency Bessel transform method extracts the dispersion information from seismic records[D]. Hefei: University of Science and Technology of China. 2020. (in Chinese).
    [28]
    刘顺昌, 李黎, 徐德馨. 基于地质环境的地下空间开发利用研究[J]. 城市勘测, 2020(1): 193-197. DOI: 10.3969/j.issn.1672-8262.2020.01.049.

    LIU S C, LI N, XU D Q. Research on the development and utilization of underground space based on geological environment[J]. Urban Geotechnical Investigation & Surveying, 2020(1): 193-197. DOI: 10.3969/j.issn.1672-8262.2020.01.049. (in Chinese).
    [29]
    刘庆华, 鲁来玉, 何正勤, 等. 地脉动空间自相关方法反演浅层S波速度结构[J]. 地震学报, 2016, 38(1): 86-95,157. DOI: 10.11939/jass.2016.01.008.

    LIU Q H, LU L Y, HE Z Q, ET AL. The spatial autocorrelation method of ground pulsation inverts the velocity structure of shallow S-waves[J]. Earthquake Science, 2016, 38(1): 86-95,157. DOI: 10.11939/jass.2016.01.008. (in Chinese).
    [30]
    徐佩芬, 李世豪, 杜建国, 等. 微动探测: 地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报, 2013, 29(5): 1841-1845.

    XU P F, LI S H, DU J G, ET AL. Micro-tremor detection: a new method for stratigraphic stratification and hidden fault structure detection[J]. Acta Petrologica Sinica, 2013, 29(5): 1841-1845. (in Chinese).

Catalog

    Article views (32) PDF downloads (6) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return