Citation: | ZHANG Y, HUANG R B, DUAN Y L, et al. Imaging Features of Patients with Coronavirus Disease 2019 with/without Underlying Diseases[J]. CT Theory and Applications, 2023, 32(5): 652-658. DOI: 10.15953/j.ctta.2023.030. (in Chinese). |
[1] |
XIE J, WANG Q, XU Y, et al. Clinical characteristics, laboratory abnormalities and CT findings of COVID-19 patients and risk factors of severe disease: A systematic review and meta-analysis[J]. Annals of Palliative Medicine, 2021, 10(2): 1928−1949. doi: 10.21037/apm-20-1863
|
[2] |
TANG Y, LIAO H, WU Q, et al. Chest CT imaging characteristics and their evolution of 48 patients with COVID-19 in Hengyang, China[J]. American Journal of Translational Research, 2021, 13(9): 9983−9992.
|
[3] |
CHAN J F W, YUAN S, KOK K H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to- person transmission: A study of a family cluster[J]. Lancet, 2020, 395(10223): 514−523. doi: 10.1016/S0140-6736(20)30154-9
|
[4] |
STOKES E K, ZAMBRANO L D, ANDERSON K N, et al. Coronavirus disease 2019 case Surveillance-United States, January 22-May 30, 2020[J]. Morbidity and Mortality Weekly Report, 2020, 69(24): 759−765. doi: 10.15585/mmwr.mm6924e2
|
[5] |
中华人民共和国国家卫生健康委员会. 国家卫生健康委员会新闻发布会[EB/OL]. [2020-02-04]. http://news. cctv.com/zhibo/tuwen2016/gjwjw/index.shtml.
|
[6] |
中华人民共和国国家卫生健康委员会, 新型冠状病毒感染诊疗方案(试行第十版)[EB/OL]. [2023-01-05]. http://www.gov.cn/zhengce/zhengceku/2023-01/06/5735343/files/5844ce04246b431dbd322d8ba10afb48.pdf.
|
[7] |
ASSELAH T, DURANTEL D, PASMANT E, et al. COVID-19: Discovery, diagnostics and drug development[J]. Journal of Hepatology, 2021, 74(1): 168−184. doi: 10.1016/j.jhep.2020.09.031
|
[8] |
XU Z, SHI L, WANG Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. The Lancet Respiratory Medicine, 2020, 8(4): 420−422. doi: 10.1016/S2213-2600(20)30076-X
|
[9] |
ZHU N, ZHANG D, WANG W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. The New England Journal of Medicine, 2020, 382(8): 727−733. doi: 10.1056/NEJMoa2001017
|
[10] |
仕丽, 丁欢, 王檀, 等. 134例合并不同基础疾病新型冠状病毒肺炎患者转重率分析[J]. 吉林中医药, 2021,41(11): 1458−1461. doi: 10.13463/j.cnki.jlzyy.2021.11.016
SHI L, DING H, WNAG T, et al. An analysis on the aggravation rate of the 134 COVID-19 patients combined with different underlying diseases[J]. Jilin Journal of Traditional Chinese Medicine, 2021, 41(11): 1458−1461. (in Chinese). doi: 10.13463/j.cnki.jlzyy.2021.11.016
|
[11] |
HUANG C, WANG Y, LI X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497−506.
|
[12] |
KANNE J P, LITTLE B P, CHUNG J H, et al. Essentials for radiologists on COVID-19: An update-radiology scientific expert panel[J]. Radiology, 2020, 296(2): E113−E114. doi: 10.1148/radiol.2020200527
|
[13] |
黄璐, 韩瑞, 于朋鑫, 等. 新型冠状病毒肺炎不同临床分型间CT和临床表现的相关性研究[J]. 中华放射学杂志, 2020,54(4): 300−304. doi: 10.3760/cma.j.cn112149-20200205-00087
HUANG L, HAN R, YU P X, et al. A correlation study of CT and clinical features of different clinical types of COVID-19[J]. Chinese Journal of Radiology, 2020, 54(4): 300−304. (in Chinese). doi: 10.3760/cma.j.cn112149-20200205-00087
|
[14] |
SHI H, HAN X, JIANG N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study[J]. The Lancet Infectious Disease, 2020, 20(4): 425−434. doi: 10.1016/S1473-3099(20)30086-4
|
[15] |
HU Q, GUAN H, SUN Z, et al. Early CT features and temporal lung changes in COVID-19 pneumonia in Wuhan, China[J]. European Journal of Radiology, 2020, 128: 109017. doi: 10.1016/j.ejrad.2020.109017
|
[16] |
ZHAO W, ZHONG Z, XIE X, et al. Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: A multicenter study[J]. American Journal of Roentgenology, 2020, 214(5): 1072−1077. doi: 10.2214/AJR.20.22976
|
[17] |
ZHOU S, ZHU T, WANG Y, et al. Imaging features and evolution on CT in 100 COVID-19 pneumonia patients in Wuhan, China[J]. European Radiology, 2020, 30(10): 5446−5454. doi: 10.1007/s00330-020-06879-6
|
[18] |
李运江, 叶云峰, 宣伟玲, 等. 有无基础疾病的新型冠状病毒肺炎患者首次胸部高分辨率CT表现比较[J]. 浙江医学, 2021,43(14): 1575−1578, 1585. doi: 10.12056/j.issn.1006-2785.2021.43.14.2020-4418
|
[19] |
史河水, 韩小雨, 樊艳青, 等. 新型冠状病毒(2019-nCoV)感染的肺炎临床特征及影像学表现[J]. 临床放射学杂志, 2020,39(1): 8−11. doi: 10.13437/j.cnki.jcr.20200206.002
SHI H S, HAN X Y, FAN Y Q, et al. Radiologic features of patients with 2019-nCoV infection[J]. Journal of Clinical Radiology, 2020, 39(1): 8−11. (in Chinese). doi: 10.13437/j.cnki.jcr.20200206.002
|
[20] |
MACHNICKI S, PATEL D, SINGH A, et al. The usefulness of chest CT imaging in patients with suspected or diagnosed COVID-19: A review of literature[J]. Chest, 2021, 160(2): 652−670.
|
[21] |
PAREKH M, DONURU A, BALASUBRAMANYA R, et al. Review of the chest CT differential diagnosis of ground-glass opacities in the COVID era[J]. Radiology, 2020, 297(3): E289−E302. doi: 10.1148/radiol.2020202504
|
[22] |
孙莹, 李玲, 刘晓燕, 等. 早期新型冠状病毒肺炎的胸部薄层平扫CT表现特征[J]. CT理论与应用研究, 2023,32(1): 131−138. DOI: 10.15953/j.ctta.2023.006.
SUN Y, LI L, LIU X Y, et al. Imaging features of early COVID-19 on chest thin-slice non-enhanced CT[J]. CT Theory and Applications, 2023, 32(1): 131−138. DOI: 10.15953/j.ctta.2023.006. (in Chinese).
|
[23] |
KOO H J, LIM S, CHOE J, et al. Radiographic and CT features of viral pneumonia[J]. Radiographics, 2018, 38(3): 719−739. doi: 10.1148/rg.2018170048
|
[1] | KANG Zhaoting, OUYANG Xuehui, CHAI Jun. Differential Diagnosis of COVID-19 and Community-acquired Pneumonia Using Different Machine Learning Methods[J]. CT Theory and Applications, 2023, 32(5): 685-694. DOI: 10.15953/j.ctta.2023.079 |
[2] | HAO Qi, LIU Xiaoyan, ZHANG Yan, LI Xingpeng, ZHANG Yimeng, LIU Mengke, ZHANG Xiaojie, LI Ling, GUO Jia, DU Changyue, SUN Ying, HUO Meng, ZHANG Mingxia, LIU Wei, DUAN Yongli, DUAN Shuhong, WANG Rengui. The Clinical Value of Thin-section Chest Computed Tomography Scan for the Classification of Coronavirus Disease 2019 (COVID-19)[J]. CT Theory and Applications, 2023, 32(5): 675-683. DOI: 10.15953/j.ctta.2023.041 |
[3] | LI Xingpeng, YUAN Hui, DU Changyue, LIU Xiaoyan, LI Ling, LIU Mengke, ZHANG Yimeng, ZHANG Yan, HAO Qi, DUAN Shuhong, WANG Rengui. Analysis of Thin Slice Computed Tomography Features of Coronavirus Disease 2019 Related Vascular Abnormalities[J]. CT Theory and Applications, 2023, 32(5): 667-674. DOI: 10.15953/j.ctta.2023.026 |
[4] | LIANG Yuhong, ZHONG Xixi, YAO Xinqun, HUANG Shiqi, LUO Lian, LYU Yaping. High-resolution Computed Tomography (HRCT) Characteristics of Coronavirus Disease 2019 (COVID-19) in Patients with Diabetes[J]. CT Theory and Applications, 2023, 32(5): 659-665. DOI: 10.15953/j.ctta.2023.031 |
[5] | HUO Meng, LI Ling, SUN Ying, ZHANG Mingxia, SUN Lei, GUO Jia, DU Changyue, LI Xingpeng, HAO Qi, ZHANG Yan, DUAN Shuhong, LIU Xiaoyan, LIU Wei, DUAN Yongli, ZHANG Chunyan, WANG Rengui. Analysis of Coronavirus Disease 2019 Chest High-resolution Computed Tomography Manifestations between Groups with Different Neutrophil- to-Lymphocyte Ratios[J]. CT Theory and Applications, 2023, 32(3): 387-394. DOI: 10.15953/j.ctta.2023.027 |
[6] | ZHANG Mingxia, LI Ling, SUN Ying, GUO Jia, DU Changyue, LI Xingpeng, ZHANG Yan, HAO Qi, DUAN Shuhong, LIU Xiaoyan, SUN Lei, HUO Meng, ZHANG Chunyan, WANG Rengui. Comparative Analysis of Clinical and Computed Tomography Imaging Features of COVID-19 with Different Disease Courses[J]. CT Theory and Applications, 2023, 32(3): 380-386. DOI: 10.15953/j.ctta.2023.021 |
[7] | WEI Dongxu, YAN Lihua, SHI Junqiang. COVID-19 Deep Learning Diagnosis Method Based on Attention Mechanism and Transfer Learning[J]. CT Theory and Applications, 2021, 30(4): 477-486. DOI: 10.15953/j.1004-4140.2021.30.04.08 |
[8] | SHEN Jing, YU Jing, YAN Yingnan, SANG Yarong, JU Ronghui, PAN Long, LI Guize, LI Xin, WU Jianlin. Chest CT Features of COVID-19 and Its Evolution[J]. CT Theory and Applications, 2021, 30(2): 199-207. DOI: 10.15953/j.1004-4140.2021.30.02.07 |
[9] | WANG Zengkui, ZHANG Zhaofu, PANG Jun, WEI Xiaohua, PANG Hongyan, GAO Dongwei. The Clinical Subtypes of Corona Virus Disease 2019 Correspond to CT Findings and the Value of Artificial Intelligence[J]. CT Theory and Applications, 2020, 29(5): 534-542. DOI: 10.15953/j.1004-4140.2020.29.05.03 |
[10] | YAO Yonggang, DU Jingbo, LIAO Jianyong, GOU Zhenheng, FU Shunbin, JIN Erhu. Study of Chest CT Features of COVID-19[J]. CT Theory and Applications, 2020, 29(2): 169-176. DOI: 10.15953/j.1004-4140.2020.29.02.07 |