ISSN 1004-4140
CN 11-3017/P
HE Y L, XU C R, WU L J, et al. Correlation of Lung Lesion Volume Measurement Using Artificial Intelligence and Prognosis of Patients with Severe Coronavirus Disease 2019 Infection[J]. CT Theory and Applications, 2023, 32(3): 331-338. DOI: 10.15953/j.ctta.2023.061. (in Chinese).
Citation: HE Y L, XU C R, WU L J, et al. Correlation of Lung Lesion Volume Measurement Using Artificial Intelligence and Prognosis of Patients with Severe Coronavirus Disease 2019 Infection[J]. CT Theory and Applications, 2023, 32(3): 331-338. DOI: 10.15953/j.ctta.2023.061. (in Chinese).

Correlation of Lung Lesion Volume Measurement Using Artificial Intelligence and Prognosis of Patients with Severe Coronavirus Disease 2019 Infection

More Information
  • Received Date: March 14, 2023
  • Revised Date: April 03, 2023
  • Accepted Date: April 05, 2023
  • Available Online: April 26, 2023
  • Published Date: May 30, 2023
  • Objective: To analyze the correlation between lung lesion volume and associated underlying diseases and prognosis of patients with severe coronavirus disease infection (COVID-19). Method: We reviewed 136 patients with severe COVID-19 in our hospital from December 8, 2022 to January 31, 2023. We measured the volume of lung lesions using artificial intelligence (AI), collected concomitant basic disease data and laboratory tests, and analyzed their impact on the prognosis of severe COVID-19. Results: The difference in the different prognoses of severe COVID-19, such as age, hypoproteinemia, stroke, lactate dehydrogenase, blood urea nitrogen (BUN), prothrombin time, albumin, leukocyte, lymphocyte ratio, neutrophil ratio, C-reactive protein, D-dimer, total lung lesion volume (TLLV), and percentage of total lung lesion volume (PTLLV), between the two groups was significant. Age, TLLV, PTLLV, BUN, and white blood cells were positively correlated with poor prognosis, while albumin was negatively correlated with poor prognosis. Conclusion: The older, the larger TLLV and PTLLV are, the more likely the patients with severe COVID-19 will have poor prognosis. The increase in indicators, such as BUN and white blood cells, and decrease in albumin are the risk factors for poor prognosis of the patients with severe COVID-19.
  • [1]
    中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[J]. 中国合理用药探索, 2023,20(1): 1−11. doi: 10.3969/j.issn.2096-3327.2023.01.001

    National Health Commission of the People's Republic of China. Diagnosis and treatment of COVID-19 (Trial Version 10)[J]. Chinese Journal of Rational Drug Use, 2023, 20(1): 1−11. (in Chinese). doi: 10.3969/j.issn.2096-3327.2023.01.001
    [2]
    彭丁, 杨爽, 李邦一, 等. 老年重症及危重症新型冠状病毒感染患者预后的危险因素分析[J]. 中华老年多器官疾病杂志, 2021,20(8): 600−603. doi: 10.11915/j.issn.1671-5403.2021.08.125

    PENG D, YANG S, LI B Y, et al. Risk factors of prognosis in severe or critically ill elderly patients infected with 2019 novel coronavirus[J]. Chinese Journal of Multiple Organ Diseases in the Elderly, 2021, 20(8): 600−603. (in Chinese). doi: 10.11915/j.issn.1671-5403.2021.08.125
    [3]
    LIU Y J, LU P, PENG L, et al. High-sensitivity troponin I is an indicator of poor prognosis in patients with severe COVID-19 related pneumonia[J]. International Journal of General Medicine, 2022, 15: 7113−7121. doi: 10.2147/IJGM.S368019
    [4]
    张炜宗, 袁红, 孙金栋, 等. 新型冠状病毒感染患者院内死亡危险因素的Meta分析[J]. 中国全科医学, 2023,26(5): 607−620.

    ZHANG W W, YUAN H, SUN J D, et al. Risk factors of in-hospital death in COVID-19 patients: A Meta-analysis[J]. Chinese General Practice, 2023, 26(5): 607−620. (in Chinese).
    [5]
    TORRES-RAMIREZ C A, TIMARAN-MONTENEGRO D, MATEO-CAMACHO Y S, at al. CT-based pathological lung opacities volume as a predictor of critical illness and inflammatory response severity in patients with COVID-19[J]. Heliyon, 2022, 8(12): e11908. doi: 10.1016/j.heliyon.2022.e11908
    [6]
    YANG Y H, LURE F Y M, MIAO H Y, et al. Using artificial intelligence to assist radiologists in distinguishing COVID-19 from other pulmonary infections[J]. Journal of X-ray Science and Technology, 2021, 29(1): 1−17. doi: 10.3233/XST-200735
    [7]
    KUMAR H, FERNANDEZ C J, KOLPATTIL S, et al. Discrepancies in the clinical and radiological profiles of COVID-19: A case-based discussion and review of literature[J]. World Journal of Radiology, 2021, 13(4): 75−93. doi: 10.4329/wjr.v13.i4.75
    [8]
    孙怡瑶, 李杰, 白茜茜. 基于人工智能技术的新冠肺炎辅助诊断研究[J]. 生物医学工程学进展, 2022,43(1): 21−23. doi: 10.3969/j.issn.1674-1242.2022.01.005

    SUN Y Y, LI J, BAI X X. Research progress of auxiliary diagnosis of new coronavirus pneumonia based on artificial intelligence technology[J]. Progress in Biomedical Engineering, 2022, 43(1): 21−23. (in Chinese). doi: 10.3969/j.issn.1674-1242.2022.01.005
    [9]
    尚红, 王毓三, 申子瑜. 全国临床检验操作规程(第4版)[M]. 北京: 人民卫生出版社, 2015: 200-280.
    [10]
    AKITOSHI I, TAKAHASHI H, IBE T, et al. Comparison of semiquantitative chest CT scoring systems to estimate severity in coronavirus disease 2019 (COVID-19) pneumonia[J]. European Radiology, 2022, 32(5): 3513−3524. doi: 10.1007/s00330-021-08435-2
    [11]
    RUBIN G D, RYERSON C J, HARAMATI L B, et al. The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the Fleischner Society[J]. Radiology, 2020, 296(1): 172−180. doi: 10.1148/radiol.2020201365
    [12]
    LI K, FANG Y, LI W, et al. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19)[J]. European Radiology, 2020, 30(8): 4407−4416. doi: 10.1007/s00330-020-06817-6
    [13]
    LI K, WU J, WU F, et al. The clinical and chest CT features associated with severe and critical COVID-19 pneumonia[J]. Investigative Radiology, 2020, 55(6): 327−331. doi: 10.1097/RLI.0000000000000672
    [14]
    倪晨峰, 周妙平, 裴磊, 等. CT肺内病灶定量检测技术在新型冠状病毒肺炎诊疗中的应用[J]. 中华医院感染学杂志, 2020,30(21): 3210−3213.

    NI C F, ZHOU M P, PEI L, et al. Application of CT quantitative detection of pulmonary lesions in diagnosis and treatment of COVID-19[J]. Chinese Journal of Nosocomiology, 2020, 30(21): 3210−3213. (in Chinese).
    [15]
    中国医师协会神经内科医师分会. 新型冠状病毒感染所致神经系统疾病临床救治专家推荐意见[J]. 解放军医学杂志, 2023,48(2): 123−131. doi: 10.11855/j.issn.0577-7402.2023.02.0123

    Neurology Branch of Chinese Medical Doctor Association. Expert recommendations for clinical diagnosis and treatment of coronavirus disease 2019 induced neurological diseases[J]. Medical Journal of Chinese People's Liberation, 2023, 48(2): 123−131. (in Chinese). doi: 10.11855/j.issn.0577-7402.2023.02.0123
    [16]
    柳舟, 张亮, 詹丽英, 等. 重型/危重型新型冠状病毒肺炎患者临床特征及死亡危险因素分析[J]. 微循环学杂志, 2021,31(2): 46−51,56. doi: 10.3969/j.issn.1005-1740.2021.02.010

    LIU Z, ZHANG L, ZHAN L Y, et al. Clinical characteristics and predictors risk factors in hospitalized severe/critical COVID-19 patients[J]. Chinese Journal of Microcirculation, 2021, 31(2): 46−51,56. (in Chinese). doi: 10.3969/j.issn.1005-1740.2021.02.010
    [17]
    HEMRAJ S K, JACOB M J, KOTIAN V, et al. Chest CT findings and their temporal evolution in COVID-19 pneumonia[J]. Cureus, 2022, 14(6): e26021.
    [18]
    MARGINEAN C M, POPESCU M, VASILE C M, et al. Challenges in the differential diagnosis of COVID-19 pneumonia: A pictorial review[J]. Diagnostics (Basel), 2022, 12(11): 2823. doi: 10.3390/diagnostics12112823
    [19]
    MUSSINI C, COZZI-LEPRI A, MENOZZI M, et al. Better prognosis in females with severe COVID-19 pneumonia: Possible role of inflammation as potential mediator[J]. Clinical Microbiology and Infection, 2021, 27(8): 1137−1144. doi: 10.1016/j.cmi.2020.12.010
    [20]
    VIGNERA L S, CANNARELLA R, CONDORELLI R A, et al. Sexspecific SARS-CoV-2 mortality: Among hormone-modulated ACE2 expression, risk of venous thromboembolism and hypovitaminosis D[J]. International Journal of Molecular Sciences, 2020, 21(8): 2948. doi: 10.3390/ijms21082948
    [21]
    KLEIN S L, FLANAGAN K L. Sex differences in immune responses[J]. Nature Reviews Immunology, 2016, 16(10): 626−638. doi: 10.1038/nri.2016.90
  • Related Articles

    [1]KANG Zhaoting, OUYANG Xuehui, CHAI Jun. Differential Diagnosis of COVID-19 and Community-acquired Pneumonia Using Different Machine Learning Methods[J]. CT Theory and Applications, 2023, 32(5): 685-694. DOI: 10.15953/j.ctta.2023.079
    [2]HAO Qi, LIU Xiaoyan, ZHANG Yan, LI Xingpeng, ZHANG Yimeng, LIU Mengke, ZHANG Xiaojie, LI Ling, GUO Jia, DU Changyue, SUN Ying, HUO Meng, ZHANG Mingxia, LIU Wei, DUAN Yongli, DUAN Shuhong, WANG Rengui. The Clinical Value of Thin-section Chest Computed Tomography Scan for the Classification of Coronavirus Disease 2019 (COVID-19)[J]. CT Theory and Applications, 2023, 32(5): 675-683. DOI: 10.15953/j.ctta.2023.041
    [3]LIU Xiaoyan, BAO Zhongying, DUAN Shuhong, ZHANG Jie, ZHANG Mingxia, SUN Ying, LI Ling, WANG Rengui. Clinical Characteristics and Imaging Features of COVID-19 at Initial Diagnosis in Fever Clinic[J]. CT Theory and Applications, 2023, 32(5): 636-644. DOI: 10.15953/j.ctta.2023.149
    [4]WANG Xing, YUAN Libo, WANG Wei, LIU Jiaojiao, ZHANG Yanyan, LI Hongjun, CHEN Budong. Chest Computed Tomography Findings of Patients with Severe COVID-19 Complicated with Other Pathogens[J]. CT Theory and Applications, 2023, 32(5): 613-620. DOI: 10.15953/j.ctta.2023.054
    [5]HUO Meng, LI Ling, SUN Ying, ZHANG Mingxia, SUN Lei, GUO Jia, DU Changyue, LI Xingpeng, HAO Qi, ZHANG Yan, DUAN Shuhong, LIU Xiaoyan, LIU Wei, DUAN Yongli, ZHANG Chunyan, WANG Rengui. Analysis of Coronavirus Disease 2019 Chest High-resolution Computed Tomography Manifestations between Groups with Different Neutrophil- to-Lymphocyte Ratios[J]. CT Theory and Applications, 2023, 32(3): 387-394. DOI: 10.15953/j.ctta.2023.027
    [6]ZHANG Mingxia, LI Ling, SUN Ying, GUO Jia, DU Changyue, LI Xingpeng, ZHANG Yan, HAO Qi, DUAN Shuhong, LIU Xiaoyan, SUN Lei, HUO Meng, ZHANG Chunyan, WANG Rengui. Comparative Analysis of Clinical and Computed Tomography Imaging Features of COVID-19 with Different Disease Courses[J]. CT Theory and Applications, 2023, 32(3): 380-386. DOI: 10.15953/j.ctta.2023.021
    [7]WU Tenghui, ZHA Yunfei, YANG Feng. The Study of Application of Different Pitch Combined with ASIR in Low-dose Chest CT Screening on COVID-19[J]. CT Theory and Applications, 2022, 31(2): 186-194. DOI: 10.15953/j.1004-4140.2022.31.02.05
    [8]WEI Dongxu, YAN Lihua, SHI Junqiang. COVID-19 Deep Learning Diagnosis Method Based on Attention Mechanism and Transfer Learning[J]. CT Theory and Applications, 2021, 30(4): 477-486. DOI: 10.15953/j.1004-4140.2021.30.04.08
    [9]SHEN Jing, YU Jing, YAN Yingnan, SANG Yarong, JU Ronghui, PAN Long, LI Guize, LI Xin, WU Jianlin. Chest CT Features of COVID-19 and Its Evolution[J]. CT Theory and Applications, 2021, 30(2): 199-207. DOI: 10.15953/j.1004-4140.2021.30.02.07
    [10]YAO Yonggang, DU Jingbo, LIAO Jianyong, GOU Zhenheng, FU Shunbin, JIN Erhu. Study of Chest CT Features of COVID-19[J]. CT Theory and Applications, 2020, 29(2): 169-176. DOI: 10.15953/j.1004-4140.2020.29.02.07
  • Cited by

    Periodical cited type(3)

    1. 李杰成,柳淘,余鑫鑫,许州,周霖,邓阳全,马杰,马切,刘勇涛. X波段可移动加速器CT的运动控制系统设计. 核电子学与探测技术. 2025(05): 705-711 .
    2. 黄嘉秋,须颖,林鹏程. X射线CT几何校正研究. 中国机械. 2025(10): 28-37 .
    3. 张凯杰,丁婷,桂志国,陈平,刘祎,张鹏程,汤豪威. 基于自适应加权增强总变差的CT偏置扫描重建算法. 中国体视学与图像分析. 2024(02): 126-137 .

    Other cited types(2)

Catalog

    Article views (180) PDF downloads (17) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return