Citation: | MA L B, ZHANG J J, ZHANG G Z, et al. Carbonate Rock Physical Property Parameter Substitution Method Based on Rock Physics Models[J]. CT Theory and Applications, 2024, 33(3): 273-288. DOI: 10.15953/j.ctta.2023.185. (in Chinese). |
The physical properties of carbonate rocks play a crucial role in the exploration and development of oil and gas. Carbonate rocks are characterized by multiple types of porosity, and the complex porosity types result in a highly discrete relationship between porosity and elastic parameters. In this paper, a method based on rock physics models for substituting the physical property parameters of carbonate rocks is proposed. Initially, rock physics modeling is conducted on carbonate rock reservoirs, and inversion of the equivalent pore aspect ratio in the model is performed. During the substitution, all other parameters are kept constant, and only one of the porosity, calcite content, water saturation, or volumetric fraction of pore shapes is changed. In combination with amplitude versus offset (AVO) theory, forward modeling simulations are performed. The simulations reveal that the impacts of changes in porosity and pore shapes on seismic response are more significant, far exceeding the influences of variations in calcite content and water saturation, which have a weaker effect on seismic response. Application of actual data demonstrates that the method for substituting the physical property parameters of carbonate rocks proposed in this article can effectively analyze the impact of changes in physical property parameters and pore shapes, characterize the physical properties of rocks, and determine the types of rock porosity.
[1] |
AVSETH P, MUKERJI T, MAVKO G. Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk[M]. Cambridge: Cambridge University Press, 2005.
|
[2] |
印兴耀, 宗兆云, 吴国忱. 岩石物理驱动下地震流体识别研究[J]. 中国科学: 地球科学, 2015, 45: 8−21. DOI: 10.1007/s11430-014-4992-3.
YI Y Y, ZONG Z Y, WU G, et al. Research on seismic fluid identification driven by rock physics[J]. Scientia Sinica (Terrae)2015, 45: 8−21. DOI: 10.1007/s11430-014-4992-3. (in Chinese).
|
[3] |
MUKERJI T, JØRSTAD A, AVSETH P, et al. Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics[J]. Geophysics, 2001, 66: 988−1001. DOI: 10.1190/1.1487078.
|
[4] |
马淑芳, 韩大匡, 甘利灯, 等. 地震岩石物理模型综述[J]. 地球物理学进展, 2010, 25(2): 460−471. DOI: 10.3969/j.issn.1004-2903.2010.02.012.
MA S F, HAN D K, GAN L D, et al. A review of seismic rock physics models[J]. Progress in Geophysics, 2010, 25(2): 460-471. DOI: 10.3969/j.issn.1004-2903.2010.02.012. (in Chinese).
|
[5] |
HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society, 1952, 65(5): 349−354. DOI: 10.1088/0370-1298/65/5/307.
|
[6] |
HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the elastic behavior of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(2): 127−140. DOI: 10.1016/0022-5096(63)90060-7.
|
[7] |
KUSTER G T, TOKSÖZ M N. Velocity and attenuation of seismic waves in two-phase media[J]. Geophysics, 1974, 39: 587−618. DOI: 10.1190/1.1440450.
|
[8] |
BERRYMAN J G. Long-wavelength propagation in composite elastic media I: Spherical inclusions[J]. Journal of the Acoustical Society of America, 1980, 68(6): 1801−1819. DOI: 10.1121/1.385170.
|
[9] |
GASSMANN F. Uber die elastizitat poroser medien[J]. Vier. der Natur. Gesellschaft Zurich, 1951, 96: 1−23.
|
[10] |
BROWN R, KORRINGA J. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid[J]. Geophysics, 1975, 40: 608−616. DOI: 10.1190/1.1440551.
|
[11] |
ANSELMETTI F S, EBERLI G P. Controls on sonic velocity in carbonates[J]. Pure & Applied Geophysics, 1993, 141: 287−323. DOI: 10.1007/BF00998333.
|
[12] |
XU S, PAYNE M A. Modeling elastic properties in carbonate rocks[J]. Leading Edge, 2009, 28: 66−74. DOI: 10.1190/1.3064148.
|
[13] |
BAECHLE G, COLPAERT A, EBERLI G, et al. Effects of microporosity on sonic velocity in carbonate rocks[J]. The Leading Edge, 2008, 27(8): 1012−1018. DOI: 10.1190/1.2967554.
|
[14] |
SAYERS C M. The elastic properties of carbonates[J]. Leading Edge, 2008, 27: 1020−1024. DOI: 10.1190/1.2967555.
|
[15] |
DOU Q, SUN Y, SULLIVAN C. Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas[J]. Journal of Applied Geophysics, 2011, 74: 8−18. DOI: 10.1016/j.jappgeo.2011.02.010.
|
[16] |
李宏兵, 张佳佳, 蔡生娟, 等. 复杂孔隙储层三维岩石物理模版[J]. 地球物理学报, 2019, 62(7): 2711−2723. DOI: 10.6038/cjg2019K0672.
LI H B, ZHANG J J, CAI S J, et al. 3D rock physics template for reservoirs with complex pore structure[J]. Chinese Journal of Geophysics, 2019, 62(7): 2711−2723. DOI: 10.6038/cjg2019K0672. (in Chinese).
|
[17] |
MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metall, 1973, 21: 571-574.
|
[18] |
NORRIS A N. A differential scheme for the effective moduli of composites[J]. Mech Mater, 1985, 4: 1−16. DOI: 10.1016/0167-6636(85)90002-X.
|
[19] |
李宏兵, 张佳佳. 多重孔岩石微分等效介质模型及其干燥情形下的解析近似式[J]. 地球物理学报, 2014, 57(10): 3422−3430. DOI: 10.6038/cjg20141028.
LI H B, ZHANG J J. A differential effective medium model of multiple-porosity rock and its analytical approximations for dry rock[J]. Chinese Journal of Geophysics, 2014, 57(10): 3422−3430. DOI: 10.6038/cjg20141028. (in Chinese).
|
[20] |
李宏兵, 张佳佳, 姚逢昌. 岩石的等效孔隙纵横比反演及其应用[J]. 地球物理学报, 2013, 56(2): 608−615. DOI: 10.6038/cjg20130224.
LI H B, ZHANG J J, YAO F C. Inversion of effective pore aspect ratios for porous rocks and its applications[J]. Chinese Journal of Geophysics, 2013, 56(2): 608−615. DOI: 10.6038/cjg20130224. (in Chinese).
|
[21] |
ZHAO L, NASSER M, HAN D. Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs[J]. Geophys Prospect, 2013, 61: 827−841. DOI: 10.1111/1365-2478.12043.
|
[22] |
ZHANG T T, ZHANG R F, TIAN J Z, et al. Two-parameter prestack seismic inversion of porosity and pore-structure parameter of fractured carbonate reservoirs: Part 2: Applications[J]. Interpretation, 2018, 6: 1−36.
|
[23] |
LI H B, ZHANG J J, CAI S J, et al. A two-step method to apply Xu–Payne multi-porosity model to estimate pore type from seismic data for carbonate reservoirs[J]. Petroleum Science, 2020, 17: 615−627. DOI: 10.1007/s12182-020-00440-2.
|
[24] |
ZHANG J J, YIN X Y, ZHANG G Z. Rock physics modelling of porous rocks with multiple pore types: A multiple-porosity variable critical porosity model[J]. Geophysical Prospecting, 2020, 68: 955−967. DOI: 10.1111/1365-2478.12898.
|
[25] |
ZOEPPRITZ K. Erdbebenwellen VIII B, uber reflexion and durchgang seismischer wellen durch unstetigkeitsflachen[J]. Goettinger Nachrichten, 1919, 1: 66−84.
|
[26] |
AKI K, RICHARDS P G. Quantitative seismology, theory and methods[M]. San Francisco: WH. Freeman and Company. 1980: v1−v2.
|
[27] |
SHUEY R T. A simplification of the Zoeppritz equations[J]. Geophysics, 1985, 50: 609−614. DOI:10.1190/ 1.1441936.
|
[28] |
FRED J. Seismic amplitude interpretation[M]. Houston: Society of Exploration Geophysicists and the European Association of Geoscientists and Engineers, 2001. https://doi.org/10.1190/1.9781560801993.
|
[1] | QIN Liming, CHENG Zhiguo, ZHENG Wei, CHEN Yong, SU Yanli, SHEN Jianwen, SONG Jianguo. Rock Physics Modeling and Fracture Prediction of Double Porosity Media in the Hutubi Area[J]. CT Theory and Applications, 2023, 32(6): 723-734. DOI: 10.15953/j.ctta.2023.117 |
[2] | LIU Shiyou, QU Fuliang, ZHOU Fan, DENG Lifeng. Deep Learning Reservoir Parameter Prediction Based on Seismic Attribute Reduction: Take Ledong Area of Yinggehai Basin as an Example[J]. CT Theory and Applications, 2022, 31(5): 577-586. DOI: 10.15953/j.ctta.2021.048 |
[3] | ZHANG Yan, QIN Denwen, HUANG Jun. Application of Lame Parameter Direct Inversion in Hydrocarbon Detection of Low-porosity and Low-permeability Reservoirs in N Structure in East China Sea Basin[J]. CT Theory and Applications, 2022, 31(3): 305-316. DOI: 10.15953/j.ctta.2021.088 |
[4] | CHEN Xuananga, ZHANG Shia, LI Zhiyonga, WU Dib, WANG Chengyonga, WU Faena, CHEN Lichenga. Algebraic Reconstruction and Structure Recognition for Ultrasound CT Image on Physical Model[J]. CT Theory and Applications, 2019, 28(2): 195-204. DOI: 10.15953/j.1004-4140.2019.28.02.05 |
[5] | LI Hai-tao, DENG Shao-gui, NIU Yun-feng, WANG Jian-xiang. Study on Pore Structure Classification of Low Porosity and Permeability Sandstone[J]. CT Theory and Applications, 2018, 27(5): 551-560. DOI: 10.15953/j.1004-4140.2018.27.05.01 |
[6] | XIAO Zhi-bo, ZHANG Jin-miao, CAO Xiang-yang. Technology Application Analysis Based on the Statistics of the Physical Rock Bright Spot[J]. CT Theory and Applications, 2013, 22(3): 447-454. |
[7] | CHEN Shi-jie, ZHAO Shu-ping, XING Li-li, ZHENG Jian-feng, DU Yu-xia. Affect of CT Scanning Parameters to the Quality of Rock and Soil Tomograms[J]. CT Theory and Applications, 2013, 22(2): 245-254. |
[8] | WU He-zhen, HE Tai-ming. Simulation Study on Coded Excitation in Rock Property Ultrasound Imaging[J]. CT Theory and Applications, 2010, 19(4): 45-52. |
[9] | WANG Xin-e, TAN Mao-jin. Environment Correction and Application of Porosity Logging Data in Carbonate Formations[J]. CT Theory and Applications, 2010, 19(2): 43-52. |
[10] | WANG Wei-dong, BAO Shang-lian. Decomposition of Magnetic Resonance Images by Estimating MR Physical Parameters[J]. CT Theory and Applications, 2006, 15(4): 73-78. |
1. |
杨蓉蓉. 碳酸盐岩储层二次孔隙发育机理与增产技术研究. 化学工程与装备. 2024(08): 83-85+132 .
![]() |