Citation: | QIU A, XIE Q G. Multi-Voltage Threshold Digitization Method[J]. CT Theory and Applications, 2024, 33(4): 393-403. DOI: 10.15953/j.ctta.2024.011. (in Chinese). |
Analog-to-digital converters (ADCs) transform the analog signals of time-variant physical quantity into digital signals for storing and processing. As the bridge between natural science and information science, ADCs are indispensable in modern industry and scientific research. Since the 1920s, uniform time-domain sampling has become the basic principle in the field of ADCs with the establishment of its electronic implementation and mathematical theory. In the following decades, applications such as positron emission tomography (PET), nuclear fusion neutron spectrum, neutrino detection, etc., which require sampling of many high-speed signals, have emerged one after another. In these applications, ADCs based on uniform time-domain sampling show disadvantages of high power consumption and high cost, so the signal has to be pre-processed before digitalization with losing the original information of the signal. Based on value-domain sampling, the Multi-Voltage Threshold (MVT) method digitizes the signal through several voltage thresholds and then reconstructs the signal with a computer using prior information. The MVT method makes it possible to accurately digitize a large number of high-speed signals. At present, the MVT method has been applied in PET, X-ray security inspection, neutron logging, proton therapy monitoring, etc. This paper outlines the principle of the MVT method, introduces the research progress of MVT electronics in recent years, and further provides an outlook of the MVT research trend.
[1] |
WALDEN R H. Analog-to-digital converter survey and analysis[J]. IEEE Journal on Selected Areas in Communications, 1999, 17(4): 539−550. DOI: 10.1109/49.761034.
|
[2] |
PEARSON C. High-speed, analog-to-digital converter basics[J]. Texas Instruments Application Report, SLAA510, 2011.
|
[3] |
JERRI A J. The Shannon sampling theorem—Its various extensions and applications: A tutorial review[J]. Proceedings of the IEEE, 1977, 65(11): 1565−1596. DOI: 10.1109/PROC.1977.10771.
|
[4] |
SHANNON C E. Communication in the presence of noise[J]. Proceedings of the IRE, 1949, 37(1): 10−21.
|
[5] |
NYQUIST H. Certain topics in telegraph transmission theory[J]. Transactions of the American Institute of Electrical Engineers, 1928, 47(2): 617−644. DOI: 10.1109/T-AIEE.1928.5055024.
|
[6] |
FREDENBURG J, FLYNN M P. ADC trends and impact on SAR ADC architecture and analysis[C]//2015 IEEE Custom Integrated Circuits Conference (CICC). IEEE, 2015: 1-8.
|
[7] |
PHELPS M E, HOFFMAN E J, MULLANI N A, et al. Application of annihilation coincidence detection to transaxial reconstruction tomography[J]. Journal of Nuclear Medicine, 1975, 16(3): 210−224.
|
[8] |
FUKUDA S, FUKUDA Y, ISHITSUKA M, et al. Constraints on neutrino oscillations using 1258 days of super-Kamiokande solar neutrino data[J]. Physical Review Letters, 2001, 86(25): 5656. DOI: 10.1103/PhysRevLett.86.5656.
|
[9] |
BRYSK H. Fusion neutron energies and spectra[J]. Plasma Physics, 1973, 15(7): 611. DOI: 10.1088/0032-1028/15/7/001.
|
[10] |
VANDENBERGHE S, MIKHAYLOVA E, D’HOE E, et al. Recent developments in time-of-flight PET[J]. EJNMMI Physics, 2016, 3: 1−30. DOI: 10.1186/s40658-016-0137-4.
|
[11] |
SURTI S, KUHN A, WERNER M E, et al. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities[J]. Journal of Nuclear Medicine, 2007, 48(3): 471−480.
|
[12] |
JAKOBY B W, BERCIER Y, CONTI M, et al. Physical and clinical performance of the mCT time-of-flight PET/CT scanner[J]. Physics in Medicine & Biology, 2011, 56(8): 2375.
|
[13] |
XIE Q, KAO C M, HSIAU Z, et al. A new approach for pulse processing in Positron Emission Tomography[J]. IEEE Transactions on Nuclear Science, 2005, 52(4): 988−995. DOI: 10.1109/TNS.2005.852966.
|
[14] |
XI D, ZENG C, MEI X, et al. A digital PET system based on SiPMs and FPGA-only MVT digitizers[C]//2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2014: 1-3.
|
[15] |
NIEDŹWIECKI S, BIAŁAS P, CURCEANU C, et al. J-PET: A new technology for the whole-body PET imaging[J]. arXiv Preprint arXiv: 1710.11369, 2017.
|
[16] |
MOSKAL P, KISIELEWSKA D, CURCEANU C, et al. Feasibility study of the positronium imaging with the J-PET tomograph[J]. Physics in Medicine & Biology, 2019, 64(5): 055017.
|
[17] |
GAO M, CHEN H H, CHEN F H, et al. First results from all-digital PET dual heads for in-beam beam-on proton therapy monitoring[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 5(6): 775−782.
|
[18] |
ZHAO S, WANG Z, LI M, et al. FPGA-only MVT digitizer for neutron downhole applications[J]. Measurement, 2023, 211: 112649. DOI: 10.1016/j.measurement.2023.112649.
|
[19] |
CHEN R, CAI C, LIU W, et al. Multi-voltage threshold digitizer using a time-varied threshold for photon-counting X-ray security inspection imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1048: 167886.
|
[20] |
JHA A K, Van DAM H T, KUPINSKI M A, et al. Simulating silicon photomultiplier response to scintillation light[J]. IEEE transactions on nuclear science, 2013, 60(1): 336−351. DOI: 10.1109/TNS.2012.2234135.
|
[21] |
QIU A, WAN L, LING Y, et al. Energy calibration of MVT digitizers in all-digital gamma cameras[J]. IEEE Transactions on Nuclear Science, 2023.
|
[22] |
CARDOSO J F. Blind signal separation: Statistical principles[J]. Proceedings of the IEEE, 1998, 86(10): 2009−2025. DOI: 10.1109/5.720250.
|
[23] |
奚道明. 数字闪烁探测器[D]. 武汉: 华中科技大学, 2015.
|
[24] |
HENZLER S, HENZLER S. Time-to-digital converter basics[M]. Springer Netherlands, 2010.
|
[25] |
DUDEK P, SZCZEPANSKI S, HATFIELD J V. A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line[J]. IEEE Journal of Solid-State Circuits, 2000, 35(2): 240−247. DOI: 10.1109/4.823449.
|
[26] |
Van de PLASSCHE R J. CMOS integrated analog-to-digital and digital-to-analog converters[M]. Springer Science & Business Media, 2013.
|
[27] |
KIM H, KAO C M, XIE Q, et al. A multi-threshold sampling method for TOF-PET signal processing[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 602(2): 618-621.
|
[28] |
XI D, KAO C M, LIU W, et al. Fpga-only MVT digitizer for TOF PET[J]. IEEE Transactions on Nuclear Science, 2013, 60(5): 3253−3261. DOI: 10.1109/TNS.2013.2277855.
|
[29] |
PAŁKA M, STRZEMPEK P, KORCYL G, et al. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement[J]. Journal of Instrumentation, 2017, 12(8): P08001. DOI: 10.1088/1748-0221/12/08/P08001.
|
[30] |
AMARA A, AMIEL F, EA T. FPGA vs. ASIC for low power applications[J]. Microelectronics Journal, 2006, 37(8): 669−677. DOI: 10.1016/j.mejo.2005.11.003.
|
[31] |
NAYAK P. A study of technology roadmap for application-specific integrated circuit[D]. Rice University, 2021.
|
[32] |
Application specific integrated circuit (ASIC) technology[M]. Academic Press, 2012.
|
[33] |
SEIFERT S, Van der LEI G, Van DAM H T, et al. First characterization of a digital SiPM based time-of-flight PET detector with 1 mm spatial resolution[J]. Physics in Medicine & Biology, 2013, 58(9): 3061.
|
[34] |
GRAMUGLIA F, MUNTEAN A, VENIALGO E, et al. CMOS 3D-stacked FSI multi-channel digital SiPM for time-of-flight PET applications[C]//2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2020: 1-3.
|
[35] |
D’ASCENZO N, BROCKHERDE W, DREINER S, et al. Design and characterization of a silicon photomultiplier in 0.35-µm CMOS[J]. IEEE Journal of the Electron Devices Society, 2017, 6: 74−80.
|
[36] |
NOLET F, DUBOIS F, ROY N, et al. Digital SiPM channel integrated in CMOS 65 nm with 17.5 ps FWHM single photon timing resolution[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 912: 29-32.
|
[37] |
NIKL M. Scintillation detectors for X-rays[J]. Measurement Science and Technology, 2006, 17(4): R37. DOI: 10.1088/0957-0233/17/4/R01.
|
[38] |
KATAOKA J, KISHIMOTO A, FUJITA T, et al. Recent progress of MPPC-based scintillation detectors in high precision X-ray and Gamma-ray imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 248-254.
|
[39] |
PEURRUNG A J. Recent developments in neutron detection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 443(2/3): 400-415.
|
[40] |
SHAO Y. A new timing model for calculating the intrinsic timing resolution of a scintillator detector[J]. Physics in Medicine & Biology, 2007, 52(4): 1103.
|
[41] |
DERENZO S E, CHOONG W S, MOSES W W. Fundamental limits of scintillation detector timing precision[J]. Physics in Medicine & Biology, 2014, 59(13): 3261.
|
[42] |
DORENBOS P, de HAAS J T M, van EIJK C W E. Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals[J]. IEEE Transactions on Nuclear Science, 1995, 42(6): 2190−2202. DOI: 10.1109/23.489415.
|
[43] |
DORENBOS P. Scintillation mechanisms in Ce3+ doped halide scintillators[J]. Physica Status Solidi (a), 2005, 202(2): 195−200. DOI: 10.1002/pssa.200460106.
|
[44] |
BIROWOSUTO M D, DORENBOS P. Novel γ- and X-ray scintillator research: On the emission wavelength, light yield and time response of Ce3+ doped halide scintillators[J]. Physica Status Solidi (a), 2009, 206(1): 9−20. DOI: 10.1002/pssa.200723669.
|
[45] |
陈希孺. 概率论与数理统计[M]. 合肥: 中国科学技术大学出版社, 2009.
|
[46] |
林元烈. 应用随机过程[M]. 北京: 清华大学出版社有限公司, 2002.
|
[47] |
RONCALI E, CHERRY S R. Simulation of light transport in scintillators based on 3D characterization of crystal surfaces[J]. Physics in Medicine & Biology, 2013, 58(7): 2185.
|
[48] |
BERG E, RONCALI E, CHERRY S R. Optimizing light transport in scintillation crystals for time-of-flight PET: An experimental and optical Monte Carlo simulation study[J]. Biomedical Optics Express, 2015, 6(6): 2220−2230. DOI: 10.1364/BOE.6.002220.
|
[49] |
YANG X, DOWNIE E, FARRELL T, et al. Study of light transport inside scintillation crystals for PET detectors[J]. Physics in Medicine & Biology, 2013, 58(7): 2143.
|
[50] |
LECOQ P, GUNDACKER S. SiPM applications in positron emission tomography: Toward ultimate PET time-of-flight resolution[J]. The European Physical Journal Plus, 2021, 136(3): 292. DOI: 10.1140/epjp/s13360-021-01183-8.
|
[51] |
GRODZICKA-KOBYLKA M, MOSZYŃSKI M, SZCZĘŚNIAK T. Silicon photomultipliers in Gamma spectroscopy with scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 926: 129-147.
|
[52] |
PIEMONTE C, GOLA A. Overview on the main parameters and technology of modern Silicon Photomultipliers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 926: 2-15.
|
[53] |
MARANO D, BELLUSO M, BONANNO G, et al. Accurate analytical single-photoelectron response of silicon photomultipliers[J]. IEEE Sensors Journal, 2014, 14(8): 2749−2754. DOI: 10.1109/JSEN.2014.2316363.
|
[54] |
GRODZICKA M, SZCZĘŚNIAK T, MOSZYŃSKI M, et al. New method for evaluating effective recovery time and single photoelectron response in silicon photomultipliers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 783: 58-64.
|
[55] |
GALLEGO L, ROSADO J, BLANCO F, et al. Modeling crosstalk in silicon photomultipliers[J]. Journal of Instrumentation, 2013, 8(5): P05010. DOI: 10.1088/1748-0221/8/05/P05010.
|
[56] |
ROSADO J. Modeling the nonlinear response of silicon photomultipliers[J]. IEEE Sensors Journal, 2019, 19(24): 12031−12039. DOI: 10.1109/JSEN.2019.2938018.
|
[57] |
Van DAM H T, SEIFERT S, VINKE R, et al. A comprehensive model of the response of silicon photomultipliers[J]. IEEE Transactions on Nuclear Science, 2010, 57(4): 2254−2266. DOI: 10.1109/TNS.2010.2053048.
|
[58] |
WEITZEL Q, BERNHARD P, BROGNA A S, et al. Measurement of the response of Silicon Photomultipliers from single photon detection to saturation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 936: 558-560.
|
[59] |
QIU A, XIE Q. Mathematical considerations in energy spectrum recovery for digital energy spectrometers[J]. IEEE Transactions on Nuclear Science, 2023.
|
[60] |
BÉ M M, CHISTÉ V, DULIEU C, et al. Table of radionuclides[M]. 2004.
|
[61] |
LLOYD S P. A sampling theorem for stationary (wide sense) stochastic processes[J]. Transactions of the American Mathematical Society, 1959, 92(1): 1−12.
|
[62] |
LEE A J. Sampling theorems for nonstationary random processes[J]. Transactions of the American Mathematical Society, 1978, 242: 225−241. DOI: 10.1090/S0002-9947-1978-0482995-6.
|
[63] |
YEN J. On nonuniform sampling of bandwidth-limited signals[J]. IRE Transactions on Circuit Theory, 1956, 3(4): 251−257. DOI: 10.1109/TCT.1956.1086325.
|
[64] |
MARVASTI F. Nonuniform sampling: Theory and practice[M]. Springer Science & Business Media, 2012.
|
[65] |
MISHALI M, ELDAR Y C. Sub-nyquist sampling[J]. IEEE Signal Processing Magazine, 2011, 28(6): 98−124. DOI: 10.1109/MSP.2011.942308.
|
[66] |
MISHALI M, ELDAR Y C. From theory to practice: Sub-nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 375−391. DOI: 10.1109/JSTSP.2010.2042414.
|
[67] |
FANG J, WANG B, LI H, et al. Recent advances on sub-nyquist sampling-based wideband spectrum sensing[J]. IEEE Wireless Communications, 2021, 28(3): 115−121. DOI: 10.1109/MWC.001.2000353.
|
[68] |
YE J C. Compressed sensing MRI: A review from signal processing perspective[J]. BMC Biomedical Engineering, 2019, 1(1): 1−17. DOI: 10.1186/s42490-019-0004-1.
|
[69] |
STEIN E M, SHAKARCHI R. Fourier analysis: An introduction[M]. Princeton University Press, 2011.
|
[70] |
STEIN E M, SHAKARCHI R. Real analysis: Measure theory, integration, and Hilbert spaces[M]. Princeton University Press, 2009.
|
[71] |
ROSS S M. Introduction to probability models[M]. Academic Press, 2014.
|
[1] | PENG Jun, LI Qijia, GAO Jianhua, WANG Peng, XIONG Youliang. Application of Electromagnetic Waves for Karst Exploration in Urban Tunnels[J]. CT Theory and Applications, 2023, 32(4): 471-479. DOI: 10.15953/j.ctta.2022.184 |
[2] | LI Weiwei, XIONG Xin, MENG Aijun. Simulation Study on the Influence of the Distance between Two Boreholes on Seismic CT in Karst Detection[J]. CT Theory and Applications, 2022, 31(1): 33-45. DOI: 10.15953/j.1004-4140.2022.31.01.04 |
[3] | XU Zhi-yong, WANG Jun, WANG Shi-ping. Application of Cross-borehole Electromagnetic Computerized Tomography in Karst Detection along Kunming Subway[J]. CT Theory and Applications, 2018, 27(5): 617-626. DOI: 10.15953/j.1004-4140.2018.27.05.08 |
[4] | HU Fu-peng, WU Mao-lin, XU Dian-bo, FU Mao-ru. The Karst Area Perspective Imaging was Performed Using Electromagnetic Wave CT Technique[J]. CT Theory and Applications, 2018, 27(2): 205-212. DOI: 10.15953/j.1004-4140.2018.27.02.09 |
[5] | PENG Yao, DONG Yan-ping, FAN Yong-sheng, XU Lian-ze, ZHAO Xian-gang. Application of the Electromagnetic CT in Karst Exploration of T1d in Wuhan[J]. CT Theory and Applications, 2016, 25(4): 419-424. DOI: 10.15953/j.1004-4140.2016.25.04.05 |
[6] | YANG Li-pu, XU Zhi-ping, LI De-qing, XU Shun-qiang, XIONG Wei, QIU Yong. The Application of SIRT Tomography to the Karst Area of a Nuclear Power Plant[J]. CT Theory and Applications, 2014, 23(2): 219-226. |
[7] | HAN Guo-hua, HUANG Ming-xi, LI Chuan, HE Xiao-ling, YANG Qiang, WANG Hai-yan, ZHOU Hai-bin, WANG You-xue, XIONG Bin, ZHANG Zhi, XUE Ting-xiao. Borehole Electromagnetic Imaging and Its Application in Karst Exploration[J]. CT Theory and Applications, 2013, 22(4): 615-621. |
[8] | TANG Ying-jie, GE Wei-zhong. The Application of the Well between Resistivity CT Method to the Engineering Testing[J]. CT Theory and Applications, 2013, 22(2): 275-282. |
[9] | LI Hua-qing, GAN Fu-ping, WEI Yu, HUANG Xian-bo, LU Cai-kun. Using CT Imaging between Hole on the Karst Rock Mass Structure and Power Station Dam Foundation Seepage and Stability Research[J]. CT Theory and Applications, 2012, 21(4): 635-645. |
[10] | LI Yong-tao, TAO Xi-lin, YU Jian-he, PENG Xin-fa, YANG Fu-qiang. Application of Cross-Borehole Electromagnetic Computerized Tomography in Karst Detection along Yangtze River Levee[J]. CT Theory and Applications, 2009, 18(1): 55-62. |
1. |
贾红敏,卫宏江,赵瑾璐,杨正汉. CT增强长时间延迟扫描在腹膜假黏液瘤PCI评分中的价值研究. CT理论与应用研究(中英文). 2025(02): 311-318 .
![]() | |
2. |
贾红敏,王志群,卫宏江,翟喜超. CT腹膜癌指数对腹膜假黏液瘤可切除性价值研究. CT理论与应用研究. 2021(03): 323-330 .
![]() | |
3. |
史冠军,夏奥,蔚莉菲,马瑞卿,许洪斌. 腹膜假黏液瘤的诊断与治疗研究进展. 肿瘤学杂志. 2021(12): 1034-1040 .
![]() |