ISSN 1004-4140
CN 11-3017/P
ZHANG B, QIU A, XIA Y, et al. All-Digital Positron Emission Tomography Industry Ecology[J]. CT Theory and Applications, 2024, 33(4): 459-470. DOI: 10.15953/j.ctta.2024.018. (in Chinese).
Citation: ZHANG B, QIU A, XIA Y, et al. All-Digital Positron Emission Tomography Industry Ecology[J]. CT Theory and Applications, 2024, 33(4): 459-470. DOI: 10.15953/j.ctta.2024.018. (in Chinese).

All-Digital Positron Emission Tomography Industry Ecology

More Information
  • Received Date: November 14, 2023
  • Revised Date: March 11, 2024
  • Accepted Date: March 28, 2024
  • Available Online: April 08, 2024
  • The digital positron emission tomography (PET) innovation technology system, which gradually evolved from the Multi-Voltage Threshold (MVT) sampling method, has driven the development of many fields, including key materials, core devices, electronics, intelligent algorithms, and industry standards, forming a new PET industry ecology characterized by modular hardware and intelligent software. In 2010, the world's first All-Digital PET scientific instrument, based on the MVT method, was successfully developed and showed an obvious spatial resolution advantage. With the modular characteristics of the All-Digital PET’s detector, it has successively developed digital PET scientific instruments with different apertures, different fields of view (FOV), and different geometric structures for small animals, large animals, primates, and plants, and has been put into various scientific research applications. In 2015, the world's first All-Digital PET medical device prototype for human scanning was successfully developed. In the following 7 years, several clinical All-Digital PET products have been developed and put into the market. These All-Digital PET products break the fixed architecture of conventional whole body scanning in the past and use modular digital detectors to build various medical devices, such as site-dedicated PET systems, PET-insert system, wearable PET, and proton PET. It has helped promote the rapid expansion of PET applications from tumor diagnosis to new application fields such as nervous system diseases, unexplained fever, and proton precision treatment. The vigorous development of All-Digital PET ecology has also brought innovation to the industrial division of labor. The new scintillation crystal materials, the new silicon photomultiplier (SiPM), and the modular PET detector are developing independently and rapidly, forming their own standardized component or interface. The synchronous progress of upstream and downstream technologies has promoted the development of the entire PET industry chain and innovation chain. With the rapid development of All-Digital PET, the proposal of a variety of PET digital technology routes has also put forward new challenges to industry technical standards and regulatory systems, such as technical requirements for the digitization of PET medical devices and the registration guidelines that have been updated and developed simultaneously. This paper reviewed the dynamic progress of All-Digital PET in scientific instruments, medical devices, the industrial chain, and regulatory science in the past 20 years and looked forward to the future ecological development of All-Digital PET.

  • [1]
    XIE Q G, KAO C M, ZEKAI H, et al. A new approach for pulse processing in positron emission tomography[J]. IEEE Transactions on Nuclear Science, 2005, 52(4): 988−995. DOI: 10.1109/TNS.2005.852966.
    [2]
    XIE Q G, KAO C M, WANG X, et al. Potentials of digitally sampling scintillation pulses in timing determination in PET[J]. IEEE Transactions on Nuclear Science, 2009, 56(5): 2607−2613. DOI: 10.1109/TNS.2009.2023656.
    [3]
    XIE Q G, WANG L Y, ZHU J, et al. Development and initial performance measurements of Trans-PET BioCaliburn SH1.0[C]//2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). Anaheim, CA, USA, 2012: 3090-3092.
    [4]
    WANG L, ZHU J, LIANG X, et al. Performance evaluation of the Trans-PET® BioCaliburn® LH system: A large FOV small-animal PET system[J]. Physics in Medicine & Biology, 2015, 60(1): 137−150.
    [5]
    YANG Y, WANG Z H, JIN S, et al. Opposite monosynaptic scaling of BLP-vCA1 inputs governs hopefulness and helplessness-modulated spatial learning and memory[J]. Nature Communication, 2016, 7: 11935. DOI: 10.1038/ncomms11935.
    [6]
    WANG P X, JI Y X, ZHANG X J, et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates[J]. Nature Medicine, 2017, 23(4): 439−449. DOI: 10.1038/nm.4290.
    [7]
    ZHAO G N, ZHANG P, GONG J, et al. Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4[J]. Nature Medicine, 2017, 23(6): 742−752. DOI: 10.1038/nm.4334.
    [8]
    HUANG S, LEI D, YANG Q, et al. A perfusable, multifunctional epicardial device improves cardiac function and tissue repair[J]. Nature Medicine, 2021, 27(3): 480−490. DOI: 10.1038/s41591-021-01279-9.
    [9]
    LIANG Q, BIE N, YONG T, et al. The softness of tumour-cell-derived microparticles regulates their drug-delivery efficiency[J]. Nature Biomedical Engineering, 2019, 3(9): 729−740. DOI: 10.1038/s41551-019-0405-4.
    [10]
    ZHENG D W, DONG X, PAN P, et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy[J]. Nature Biomedical Engineering, 2019, 3(9): 717−728. DOI: 10.1038/s41551-019-0423-2.
    [11]
    XIE Q G, XI D, ZHU J, et al. LEGO for kids, trans-PET for scientists[C]//2014 International Symposium on Next-Generation Electronics (ISNE). Kwei-Shan, Tao-Yuan: 2014. DOI: 10.1109/ISNE.2014.6839386.
    [12]
    董超群. 面向运动目标的PET成像运动校正研究[D]. 武汉: 华中科技大学, 2021.
    [13]
    ANTONECCHIA E, BÄCKER M, CAFOLLA D, et al. Design study of a novel positron emission tomography system for plant imaging[J]. Frontiers in Plant Science, 2022, 12: 736221. DOI: 10.3389/fpls.2021.736221.
    [14]
    国家药品监督管理局医疗器械技术审评中心. 创新医疗器械特别审批申请审查结果公示(2018年第1号)[EB/OL]. (2018-01-10)[2024]. https://www.cmde.org.cn/xwdt/shpgzgg/cxyxgsh/20180110221500439.html.
    [15]
    国家药品监督管理局医疗器械技术审评中心. 医疗器械产品注册技术审评报告[EB/OL]. (2019-05-23)[2024]. https://www.cmde.org.cn/xwdt/shpbg/20190611100300808.html.
    [16]
    国家药品监督管理局. 中国境内医疗器械注册基本信息[EB/OL]. (2022-12-20)[2024]. https://www.nmpa.gov.cn/datasearch/search-info.html?nmpa=aWQ9Y2EwYTUzMzgyZjYyYjk3MTc2ZWIzYWU3ZmI5YjI1NzQmaXRlbUlkPWZmODA4MDgxODNjYWQ3NTAwMTgzY2I2NmZlNjkwMjg1.
    [17]
    D’ASCENZO N, ANTONECCHIA E, GAO M, et al. Evaluation of a digital brain positron emission tomography scanner based on the Plug&Imaging sensor technology[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4(3): 327−334. DOI: 10.1109/TRPMS.2019.2937681.
    [18]
    全球首台脑数字PET完成两百多例脑病成像[EB/OL]. [2019-11-21][2024]. https://hb.chinadaily.com.cn/a/201911/21/WS5dd6693aa31099ab995ed5e3.html.
    [19]
    黎静. 脑部专用全数字PET定量分析[D]. 武汉: 华中科技大学, 2021.
    [20]
    GAO M, CHEN H H, CHEN F H, et al. First results from all-digital PET dual heads for in-beam beam-on proton therapy monitoring[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(6): 775−782. DOI: 10.1109/TRPMS.2020.3041857.
    [21]
    高敏. 面向质子治疗射程在束监测的数字PET仪器研制[D]. 武汉: 华中科技大学, 2022.
    [22]
    D’ASCENZO N, GAO M, ANTONECCHIA E, et al. New digital plug and imaging sensor for a proton therapy monitoring system based on positron emission tomography[J]. Sensors, 2018, 18(9): 3006. DOI: 10.3390/s18093006.
    [23]
    张春. 头盔式数字PET灵敏度和计数率性能研究[D]. 武汉: 华中科技大学, 2022.
    [24]
    VAN S J, DE J J, SCHAAR J, et al. Performance characteristics of the digital Biograph Vision PET/CT system[J]. Journal of Nuclear Medicine, 2019, 60(7): 1031−1036. DOI: 10.2967/jnumed.118.215418.
    [25]
    ZEIMPEKIS K G, KOTASIDIS F A, HUELLNER M, et al. NEMA NU 2-2018 performance evaluation of a new generation 30-cm axial field-of-view Discovery MI PET/CT[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49(9): 3023−3032. DOI: 10.1007/s00259-022-05751-7.
    [26]
    RAUSCH I, RUIZ A, VALVERDE-PASCUAL I, et al. Performance evaluation of the Vereos PET/CT system according to the NEMA NU2-2012 standard[J]. Journal of Nuclear Medicine, 2019, 60(4): 561−567. DOI: 10.2967/jnumed.118.215541.
    [27]
    徐磊, 孟庆乐, 杨瑞, 等. uMI 780 PET/CT NEMA性能指标测试研究[J]. 中国医疗设备, 2019, 34(1): 14−17. DOI: 10.3969/j.issn.1674-1633.2019.01.004.

    XU L, MENG Q L, YANG R, et al. Research on the NEMA performance index tests of uMI 780 PET/CT[J]. China Medical Devices, 2019, 34(1): 14−17. DOI: 10.3969/j.issn.1674-1633.2019.01.004. (in Chinese).
    [28]
    DOROUD K, WILLIAMS M C S, ZICHICHI A, et al. Comparative timing measurements of LYSO and LFS-3 to achieve the best time resolution for TOF-PET[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 793: 57-61.
    [29]
    NEMALLAPUDI M V, GUNDACKER S, LECOQ P, et al. Sub-100 ps coincidence time resolution for positron emission tomography with LSO: Ce co doped with Ca[J]. Physics in Medicine & Biology, 2015, 60(12): 4635.
    [30]
    CATES J W, LEVIN C S. Advances in coincidence time resolution for PET[J]. Physics in Medicine & Biology, 2016, 61(6): 2255.
    [31]
    XIE Q G, KAO C M, BYRUM K, et al. Characterization of silicon photomultipliers for PET imaging[C]// 2006 IEEE Nuclear Science Symposium Conference Record. San Diego, CA, USA, 2006: 1199-1203.
    [32]
    XIE Q G, WAGNER R, GARY D, et al. Performance evaluation of multi-pixel photon counters for PET imaging[C]//2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 2007: 969-974.
    [33]
    CHEN S, HU P, GU Y, et al. Performance characteristics of the digital uMI550 PET/CT system according to the NEMA NU2-2018 standard[J]. EJNMMI Physics, 2020, 7(1): 43. DOI: 10.1186/s40658-020-00315-w.
    [34]
    HAMAMATSU. MPPCs for precision measurement[DB/OL].(2023)[2024] . https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s13360_series_kapd1052e.pdf.
    [35]
    BROADCOM. AFBR-S4K33C0115L[DB/OL]. https://docs.broadcom.com/doc/AFBR-S4K33C01XXL-SiPM-DS.
    [36]
    OnSemi. Silicon Photomultipliers (SiPM), low- noise blue-sensitive[DB/OL].(2022)[2024]. https://www.onsemi.com/pdf/datasheet/microc-series-d.pdf
    [37]
    SANZARO M, SIGNORELLI F, GATTARI P, et al. 0.16 μm-BCD silicon photomultipliers with sharp timing response and reduced correlated noise[J]. Sensors, 2018, 18(11): 3763. DOI: 10.3390/s18113763.
    [38]
    VILLA F. Analog SiPM in planar CMOS technology[C]//IEEE 44th European Solid State Device Research Conference. Venice Lido, Italy, 2014: 294-297.
    [39]
    MAZZILLO M, CONDORELLI G, SANFILIPPO D, et al. Timing performances of large area silicon photomultipliers fabricated at STMicro electronics[J]. IEEE Transactions on Nuclear Science, 2010, 57(4): 2273−2279. DOI: 10.1109/TNS.2010.2049122.
    [40]
    D’ASCENZO N, WANG L, ZHANG X, et al. Application of CMOS technology to silicon photomultiplier sensors[J]. Sensors, 2017, 17(10): 2204. DOI: 10.3390/s17102204.
    [41]
    D’ASCENZO N, ANTONECCHIA E, BRENSING A, et al. A novel high photon detection efficiency silicon photomultiplier with shallow junction in 0.35 μm cmos[J]. IEEE Electron Device Letters, 2019, 40(9): 1471−1474. DOI: 10.1109/LED.2019.2929499.
    [42]
    MARIA G B, ALBERTO D G, NICOLA B. Medical applications of silicon photomultipliers[J]. Nuclear Inst and Methods in Physics Research Section A, 2019, 926: 118−128. DOI: 10.1016/j.nima.2018.10.175.
    [43]
    ASHMANSKAS W J, LEGEYT B C, NEWCOMER F M, et al. Waveform-sampling electronics for time-of-flight PET scanner[C]//2011 IEEE Nuclear Science Symposium Conference Record. Valencia, Spain, 2011: 3347-3350.
    [44]
    KIM H, CHEN C, FRISCH H, et al. A prototype TOF PET detector module using a micro-channel plate photomultiplier tube with waveform sampling[J]. Nuclear Inst and Methods in Physics Research Section A, 2012, 662: 26−32. DOI: 10.1016/j.nima.2011.09.059.
    [45]
    FONTAINE R, BELANGER F, CADORETTE J, et al. Architecture of a dual-modality, high-resolution, fully digital positron emission tomography/computed tomography (PET/CT) scanner for small animal imaging[J]. IEEE Transactions on Nuclear Science, 2005, 52(3): 691−696. DOI: 10.1109/TNS.2005.850484.
    [46]
    BERGERON M, CADORETTE J, TÉTRAULT M A, et al. Sci-Fri AM: YIS-02: Evaluation of the LabPET4 imaging capabilities for in vivo small animal imaging[J]. Medical Physics, 2008, 35(7Part3): 3410.
    [47]
    MONZO J, ESTEVE R, LERCHE C, et al. Digital signal processing techniques to improve time resolution in positron emission tomography[J]. IEEE Transactions on Nuclear Science, 2011, 58(4): 1613−1620. DOI: 10.1109/TNS.2011.2140382.
    [48]
    BOUSSELHAM A, BOHM C. Sampling pulses for optimal timing[J]. IEEE Transactions on Nuclear Science, 2007, 54(2): 320−326. DOI: 10.1109/TNS.2007.892692.
    [49]
    XIE Q G, CHEN Y, ZHU J, et al. Initial implementation of LYSO-PSPMT block detector with an all digital DAQ system[C]//IEEE Nuclear Science Symposuim & Medical Imaging Conference. Knoxville, TN, USA, 2010: 1759-1762.
    [50]
    XIE Q G, NIU M, WANG X, et al. Initial implementation of all-digital PET DAQ system[C]//IEEE Nuclear Science Symposuim & Medical Imaging Conference. Knoxville, TN, USA, 2010: 2500-2503.
    [51]
    RITT S, DINAPOLI R, HARTMANN U. Application of the DRS chip for fast waveform digitizing[J]. Nuclear Inst and Methods in Physics Research Section A, 2010, 623(1): 486−488. DOI: 10.1016/j.nima.2010.03.045.
    [52]
    KIM H, KAO C M, KIM S, et al. A development of waveform sampling readout board for PET using DRS 4[C]//IEEE Nuclear Science Symposuim & Medical Imaging Conference, 2011: 2393-2396.
    [53]
    XI D M, KAO C M, LIU W, et al. FPGA-only MVT digitizer for TOF PET[J]. IEEE Transactions on Nuclear Science, 2013, 60(5): 3253−3261. DOI: 10.1109/TNS.2013.2277855.
    [54]
    XI D M, ZENG C, LIU W, et al. A PET detector module using FPGA-only MVT digitizers[C]//2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). Seoul, Korea (South), 2013: 1-5.
    [55]
    MEI X Z, XI D M, ZENG C, et al. A 72-channel FPGA-only MVT digitizer board and a micro-system for coincidence detection/imaging[C]//2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Seattle, WA, USA, 2014: 1-4.
    [56]
    LIU T, NIU M, GU S G, et al. A ∼0.7 mm spatial resolution all-digital animal PET system using improved trans-PET detectors[C]//2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD). Strasbourg, France, 2016: 1-3.
    [57]
    CHO S, GRAZIOSO R, ZHANG N, et al. Digital timing: sampling frequency, anti-aliasing filter and signal interpolation filter dependence on timing resolution[J]. Physics in Medicine & Biology, 2011, 56(23): 7569−7583.
    [58]
    AN S, LI H, LIU S, et al. Timing performance evaluation of PMT-quadrant-sharing LYSO detectors for time-of-flight PET[J]. IEEE Transactions on Nuclear Science, 2011, 58(5): 2155−2160. DOI: 10.1109/TNS.2011.2163081.
    [59]
    KIM E, KEY J H, Jung Y Y, et al. The trend of data path structures for data acquisition systems in positron emission tomography[C]//2012 18th IEEE-NPSS Real Time Conference. Berkeley, CA, USA, 2012: 1-8.
    [60]
    ASHMANSKAS W J, LEGEYT B C, NEWCOMER F M, et al. Waveform-sampling electronics for a whole-body time-of-flight PET scanner[J]. IEEE Transactions on Nuclear Science. 2014, 61(3): 1174-1181.
    [61]
    ZHANG J, MANIAWSKI P, KNOPP M V. Performance evaluation of the next generation solid-state digital photon counting PET/CT system[J]. EJNMMI Research, 2018, (97): 8.
    [62]
    FRANCES W Y L, HWANG H C, MARK A H, et al. A new IC with level-crossing ADC readout architecture for PET detector signals[C]//2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). Anaheim, CA, USA, 2012: 2486-2488.
    [63]
    KENJI S, HIROYUKI T, BOXUAN S, et al. Dynamic time over threshold method[J]. IEEE Transactions on Nuclear Science, 2012, 59(6): 3213−3217. DOI: 10.1109/TNS.2012.2215338.
    [64]
    YY/T 1178-2023, 正电子发射断层成像装置数字化技术要求[S]. 中国药品监督管理局发布, 2023.
    [65]
    国家药品监督管理局. 正电子发射/X射线计算机断层成像系统(数字化技术专用)注册审查指导原则[EB/OL]. (2021-12-31). https://www.nmpa.gov.cn/ylqx/ylqxggtg/20220119103122141.html.
  • Related Articles

    [1]GENG Xiaobing. Characteristics of Geological Anomalies Shown on Seismic Time Sections[J]. CT Theory and Applications, 2025, 34(3): 401-407. DOI: 10.15953/j.ctta.2024.076
    [2]Bu Chonghang, Zhang Jiajia, Zhang Guangzhi, Hu Yongze, Zhao Xinke. Turbidite Sandstone Miscible Rock Physical Modeling and Time-lapse Seismic Forward Modeling Analysis[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.048
    [3]YANG Wenhai, ZHANG Guangdong, TAN Zhi, JIN Cong. Study on Forward Numerical Simulation and Instantaneous Seismic Attributes of Natural Gas Hydrate in Permafrost Area[J]. CT Theory and Applications, 2024, 33(1): 25-34. DOI: 10.15953/j.ctta.2023.111
    [4]LIU Shiyou, QU Fuliang, ZHOU Fan, DENG Lifeng. Deep Learning Reservoir Parameter Prediction Based on Seismic Attribute Reduction: Take Ledong Area of Yinggehai Basin as an Example[J]. CT Theory and Applications, 2022, 31(5): 577-586. DOI: 10.15953/j.ctta.2021.048
    [5]WANG Chenguang, LIN Xuemin, ZHOU Xianhua, WANG Lei, SHEN Jinsong, SU Chaoyang. Fault Detection and Evaluation Based on Fusion of Multiple Seismic Attributes——An Example of Fractured and Vuggy Carbonate Formation in SHB Area,Tarimu Basin[J]. CT Theory and Applications, 2021, 30(1): 35-48. DOI: 10.15953/j.1004-4140.2021.30.01.04
    [6]HOU Bo, KANG Hong-quan, CHENG Tao. Multi-wave Time Lapse Seismic AVO Responses in Gas Reservoir Vary with Effective Pressure and Saturation[J]. CT Theory and Applications, 2018, 27(5): 601-608. DOI: 10.15953/j.1004-4140.2018.27.05.06
    [7]CHENG Gu, ZHANG Bao-jin. Research on the Scale Corresponding Relationship between the Medium Parameter and its Seismic Response Based on Inverse Scattering Theory[J]. CT Theory and Applications, 2018, 27(4): 423-432. DOI: 10.15953/j.1004-4140.2018.27.04.01
    [8]SONG Zhen-dong, JIANG Zheng-hong, WEI Cheng-wu, ZHANG Teng-fei, WANG Dan. The Study of Seismic Tomography Forward Grid Based on 3D Layered Media Model[J]. CT Theory and Applications, 2018, 27(1): 1-8. DOI: 10.15953/j.1004-4140.2018.27.01.01
    [9]LI Quan, TONG Li-qing. Micro-faults Identification Technology Based on Seismic Attribute Optimizational Analysis[J]. CT Theory and Applications, 2017, 26(5): 565-574. DOI: 10.15953/j.1004-4140.2017.26.05.05
    [10]TIAN Lian-yu. The Recognition Technology and Application of Quaternary Biogenic Gas in Sanhu Depression: A Case Study of North Nuomuhong Area[J]. CT Theory and Applications, 2015, 24(2): 261-269. DOI: 10.15953/j.1004-4140.2015.24.02.11
  • Cited by

    Periodical cited type(4)

    1. 李正腾,王敏,潘冬梅,王宪凯. CCTA斑块特征在冠状动脉管腔狭窄程度进展预测及预后的价值研究. CT理论与应用研究(中英文). 2025(01): 23-30 .
    2. 赵细辉,周瑶,王骋. 基于双源CT下CCTA斑块特征分析对冠状动脉狭窄致心绞痛的诊断价值. 影像技术. 2025(02): 54-57 .
    3. 姜小瑞,冯秀元. 对比64排CT冠状动脉成像下不同性质心绞痛患者斑块特征. CT理论与应用研究. 2024(S1): 20-23 . 本站查看
    4. 唐太娟. 64排螺旋CT冠状动脉成像低剂量技术的应用价值分析. 中外医药研究. 2024(23): 144-146 .

    Other cited types(0)

Catalog

    Article views (444) PDF downloads (65) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return