ISSN 1004-4140
CN 11-3017/P
CHEN H, ZHANG Z X, LI J J, et al. Imaging and Clinical Characteristics of SARS-CoV-2 Omicron Variants in Elderly Patients with Underlying Diseases[J]. CT Theory and Applications, 2024, 33(6): 799-807. DOI: 10.15953/j.ctta.2024.037. (in Chinese).
Citation: CHEN H, ZHANG Z X, LI J J, et al. Imaging and Clinical Characteristics of SARS-CoV-2 Omicron Variants in Elderly Patients with Underlying Diseases[J]. CT Theory and Applications, 2024, 33(6): 799-807. DOI: 10.15953/j.ctta.2024.037. (in Chinese).

Imaging and Clinical Characteristics of SARS-CoV-2 Omicron Variants in Elderly Patients with Underlying Diseases

More Information
  • Received Date: March 06, 2024
  • Revised Date: April 21, 2024
  • Accepted Date: April 22, 2024
  • Available Online: May 20, 2024
  • Objective: This study aimed to investigate the chest computed tomography (CT) findings of SARS-CoV-2 Omicron variants in elderly patients with underlying diseases. Methods: We retrospectively analyzed data from 140 elderly patients with underlying diseases who were infected with SARS-CoV-2 Omicron variants. The patients were divided into a moderate group and a severe/critical group based on their clinical classifications. Clinical data, laboratory results, and chest CT data (including lesion distribution, morphology, image signs, and lung lobe score) were collected and analyzed for all patients. Results: Hypertension and hyperlipidemia were the most prevalent underlying diseases among elderly patients with the Omicron variant of SARS-CoV-2. Ground-glass density opacity was the main chest CT manifestation, typically presenting as a mixed distribution across multiple lung lobes. Common clinical symptoms include fever, cough, and sputum production. The proportion of patients with fever was significantly higher in the severe/critical group compared to the moderate group. Additionally, the lymphocyte count was higher in the moderate group compared to the severe/critical group, while the procalcitonin level was significantly higher in the severe/critical group. Pleural thickening was also more prevalent in the severe/critical group. The right inferior lobe score was the highest in both groups (2 (1,3) and 3 (2,4) for moderate and severe/critical groups, respectively), with the total score and individual lobe scores being significantly higher in the severe/critical group. Conclusions: Chest CT scans play a crucial role in classifying disease severity and evaluating disease progression in elderly patients with underlying diseases infected with the Omicron variant of the novel coronavirus. These findings can also guide clinical treatment decisions.

  • [1]
    FERGUSON N, GHANI A, HINSLEY W, et al. Report 50: Hospitalisation risk for Omicron cases in England[J]. 2021. https://api.semanticscholar.org/CorpusID:245474800
    [2]
    SHEIKH A, KERR S, WOOLHOUSE M, et al. Severity of Omicron variant of concern and effectiveness of vaccine boosters against symptomatic disease in Scotland (EAVE II): A national cohort study with nested test-negative design[J]. The Lancet Infectious Diseases, 2022, 22(7): 959−966. DOI: 10.1016/S1473-3099(22)00141-4.
    [3]
    中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[J]. 中华临床感染病杂志, 2023, 16(1): 1−9. DOI: 10.3760/cma.j.issn.1674-2397.2023.01.001.
    [4]
    陈辉, 张紫欣, 陈七一, 等. 新型冠状病毒奥密克戎变异株感染者胸部CT表现及动态变化[J]. CT理论与应用研究, 2023, 32(3): 313−322. DOI: 10.15953/j.ctta.2023.051.

    CHEN H, ZHANG Z X, CHEN Q Y, et al. Imaging features and dynamic changes of chest computed tomography in patients infected with SARS-CoV-2 Omicron variants[J]. CT Theory and Applications, 2023, 32(3): 313−322. DOI: 10.15953/j.ctta.2023.051. (in Chinese).
    [5]
    The government of the Hongkong special administrative region[EB/OL]. [2024-05-12]. https://www.aud.gov.hk/pdf_e/e39ch05.
    [6]
    GRIGORAS M L, CITU I M, CITU C, et al. Evaluation of FIB-4, NFS, APRI and liver function tests as predictors for SARS-CoV-2 infection in the elderly population: A matched case-control analysis[J]. Journal of Clinical Medicine, 2022, 11(17): 5149. DOI: 10.3390/jcm11175149.
    [7]
    FERICEAN R M, CITU C, MANOLESCU D, et al. Characterization and outcomes of SARS-CoV-2 infection in overweight and obese patients: A dynamic comparison of COVID-19 pandemic waves[J]. Journal of Clinical Medicine, 2022, 11(10): 2916. DOI: 10.3390/jcm11102916.
    [8]
    BEYERSTEDT S, CASARO E B, RANGEL É B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2021, 40(5): 905-919. DOI: 10.1007/s10096-020-04138-6
    [9]
    ASAI Y, NOMOTO H, HAYAKAWA K, et al. Comorbidities as risk factors for severe disease in hospitalized elderly COVID-19 patients by different age-groups in Japan[J]. Gerontology, 2022, 68(9): 1027−1037. DOI: 10.1159/000521000.
    [10]
    TSUZUKI S, AKIYAMA T, MATSUNAGA N, et al. Association between physical activity status and severity of COVID-19 in older adults[J]. Epidemiology and Infection, 2022, 150: e189. DOI: 10.1017/S0950268822001686.
    [11]
    陈波, 费宇, 李玟, 等. 重症新型冠状病毒肺炎患者死亡风险因素研究[J]. 现代预防医学, 2022, 49(15): 2856−2860. DOI: 10.20043/j.cnki.MPM.202201321.

    CHEN B, FEI Y, LI W, et al. Risk factors for mortality of severely ill patients with COVID-19[J]. Modern Preventive Medicine, 2022, 49(15): 2856−2860. DOI: 10.20043/j.cnki.MPM.202201321. (in Chinese).
    [12]
    TAJMIRRIAHI M, SAMI R, MANSOURIAN M, et al. The clinical manifestation and outcome of COVID-19 in patients with a history of ischemic heart disease; A retrospective case-control study[J]. BMC Cardiovascular Disorders, 2023, 23(1): 241. DOI: 10.1186/s12872-023-03256-1.
    [13]
    AIRG-E, EKPF, ALCER, et al. CKD: The burden of disease invisible to research funders[J]. Nefrologia (Engl Ed), 2022, 42(1): 65−84. DOI: 10.1016/j.nefroe.2021.09.005.
    [14]
    LU G, ZHANG Y, ZHANG H, et al. Geriatric risk and protective factors for serious COVID-19 outcomes among older adults in Shanghai Omicron wave[J]. Emerging Microbes & Infections, 2022, 11(1): 2045−2054. DOI: 10.1080/22221751.2022.2109517.
    [15]
    LIU R, ZHANG Y, MA J, et al. Epidemiological features of SARS-CoV-2 Omicron infection under new control strategy: A cross-sectional study of the outbreak since December 2022 in Sichuan, China[J]. BMC Public Health, 2023, 23(1): 2463. DOI: 10.1186/s12889-023-17361-5.
    [16]
    GUAN W J, NI Z Y, HU Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. The New England Journal of Medicine, 2020, 382(18): 1708−1720. DOI: 10.1056/NEJMoa2002032.
    [17]
    ZHANG X, TAN Y, LING Y, et al. Viral and host factors related to the clinical outcome of COVID-19[J]. Nature, 2020, 583(7816): 437−440. DOI: 10.1038/s41586-020-2355-0.
    [18]
    王江洪, 孙跃玲, 鲁锦国, 等. 外周血淋巴细胞动态变化在新冠肺炎诊治中的意义[J]. 解放军预防医学杂志, 2020, 38(11): 115-118.

    WANG J H, SUN Y L, LU J G, et al. Significance of dynamic changes of peripheral blood lymphocytes in diagnosis and treatment of COVID-19[J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2020, 38(11): 115-118. (in Chinese).
    [19]
    黄颖, 谭明凯, 陈星, 等. 血清降钙素原在新型冠状病毒肺炎患者中的应用价值[J]. 中华临床实验室管理电子杂志, 2020, 8(3): 150−152. DOI: 10.3877/cma.j.issn.2095-5820.2020.03.005.

    HUANG Y, TAN M K, CHEN X, et al. Clinical value of procalcitonin in patients with COVID-19[J]. Chinese Journal of Clinical Laboratory Management (Electronic Editon), 2020, 8(3): 150−152. DOI: 10.3877/cma.j.issn.2095-5820.2020.03.005. (in Chinese).
    [20]
    降钙素原在成人下呼吸道感染性疾病分级管理中的应用专家共识组. 降钙素原在成人下呼吸道感染性疾病分级管理中的应用专家共识[J]. 中华急诊医学杂志, 2021, 30(4): 393-401. DOI: 10.3760/cma.j.issn.1671-0282.2021.04.004.
    [21]
    ACEDERA M L, SIRICHOKCHATCHAWAN W, BRIMSON S, et al. Age, comorbidities, C-reactive protein and procalcitonin as predictors of severity in confirmed COVID-19 patients in the Philippines[J]. Heliyon, 2023, 9(4): e15233. DOI: 10.1016/j.heliyon.2023.e15233.
    [22]
    ITO N, KITAHARA Y, MIWATA K, et al. Comparison of COVID-19 pneumonia during the SARS-CoV-2 Omicron wave and the previous non-Omicron wave in a single facility[J]. Respiratory Investigation, 2022, 60(6): 772−778. DOI: 10.1016/j.resinv.2022.08.001.
    [23]
    张志平, 张烈光, 黄德扬, 等. 老年新型冠状病毒Delta变异株感染者的胸部CT表现[J]. 广东医学, 2021, 42(12): 1421−1425. DOI: 10.13820/j.cnki.gdyx.20211973.

    ZHANG Z P, ZHANG L G, HUANG D Y, et al. Chest CT manifestations of the elderly population infected with SARS-CoV-2 variant Delta in Guangzhou[J]. Guangdong Medical Journal, 2021, 42(12): 1421−1425. DOI: 10.13820/j.cnki.gdyx.20211973. (in Chinese).
    [24]
    CHUNG M, BERNHEIM A, MEI X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV)[J]. Radiology, 2020, 295(1): 202−207. DOI: 10.1148/radiol.2020200230.
    [25]
    HAN R, HUANG L, JIANG H, et a1. Early clinical and CT manifestations of coronavirus disease 2019 (COVID-19) pneumonia[J]. American Journal of Roentgenology, 2020, 215(2): 338−343. DOI: 10.2214/AJR.20.22961.
    [26]
    胡天丽, 甘清鑫, 黄德杨, 等. 新型冠状病毒Delta变异株感染患者的首次CT表现[J]. 广东医学, 2021, 42(12): 1411−1415. DOI: 10.13820/j.cnki.gdyx.20211768.

    HU T L, GAN Q X, HUANG D Y, et al. The initial CT findings of novel of coronavirus mutant strain Delta[J]. Guangdong Medical Journal, 2021, 42(12): 1411−1415. DOI: 10.13820/j.cnki.gdyx.20211768. (in Chinese).
    [27]
    刘瑞, 武婷婷, 勾少波, 等. 新型冠状病毒感染不同毒株的CT表现演变与临床转归的相关性分析[J]. CT理论与应用研究, 2023, 32(5): 627−635. DOI: 10.15953/j.ctta.2023.059.

    LIU R, WU T T, GOU S B, et al. Correlation analysis between dynamic changes in computed tomography findings and clinical outcomes in cases infected with different strains of coronavirus disease 2019[J]. CT Theory and Applications, 2023, 32(5): 627−635. DOI: 10.15953/j.ctta.2023.059. (in Chinese).
    [28]
    李琚, 项尖尖, 王宝华, 等. 超声检查胸膜增厚对胸腔积液良恶性鉴别诊断的意义[J]. 影像研究与医学应用, 2019, 3(22): 209−210. DOI: CNKI:SUN:YXYY.0.2019-22-138.
    [29]
    杨国英, 赵殿辉, 刘靖, 等. 新冠病毒变异株Omicron老年感染者的肺部CT人工智能量化分析[J]. 中国医学计算机成像杂志, 2023, 29(1): 14−18. DOI: 10.3969/j.issn.1006-5741.2023.01.006.

    YANG G Y, ZHAO D H, LIU J, et al. Artificial intelligence quantitative analysis of lung CT in elderly patients infected with the SARS-CoV-2 Omicron variant[J]. Chinese Computed Medical Imaging, 2023, 29(1): 14−18. DOI: 10.3969/j.issn.1006-5741.2023.01.006. (in Chinese).
  • Related Articles

    [1]KANG Zhaoting, OUYANG Xuehui, CHAI Jun. Differential Diagnosis of COVID-19 and Community-acquired Pneumonia Using Different Machine Learning Methods[J]. CT Theory and Applications, 2023, 32(5): 685-694. DOI: 10.15953/j.ctta.2023.079
    [2]HAO Qi, LIU Xiaoyan, ZHANG Yan, LI Xingpeng, ZHANG Yimeng, LIU Mengke, ZHANG Xiaojie, LI Ling, GUO Jia, DU Changyue, SUN Ying, HUO Meng, ZHANG Mingxia, LIU Wei, DUAN Yongli, DUAN Shuhong, WANG Rengui. The Clinical Value of Thin-section Chest Computed Tomography Scan for the Classification of Coronavirus Disease 2019 (COVID-19)[J]. CT Theory and Applications, 2023, 32(5): 675-683. DOI: 10.15953/j.ctta.2023.041
    [3]LIU Xiaoyan, BAO Zhongying, DUAN Shuhong, ZHANG Jie, ZHANG Mingxia, SUN Ying, LI Ling, WANG Rengui. Clinical Characteristics and Imaging Features of COVID-19 at Initial Diagnosis in Fever Clinic[J]. CT Theory and Applications, 2023, 32(5): 636-644. DOI: 10.15953/j.ctta.2023.149
    [4]WANG Xing, YUAN Libo, WANG Wei, LIU Jiaojiao, ZHANG Yanyan, LI Hongjun, CHEN Budong. Chest Computed Tomography Findings of Patients with Severe COVID-19 Complicated with Other Pathogens[J]. CT Theory and Applications, 2023, 32(5): 613-620. DOI: 10.15953/j.ctta.2023.054
    [5]HUO Meng, LI Ling, SUN Ying, ZHANG Mingxia, SUN Lei, GUO Jia, DU Changyue, LI Xingpeng, HAO Qi, ZHANG Yan, DUAN Shuhong, LIU Xiaoyan, LIU Wei, DUAN Yongli, ZHANG Chunyan, WANG Rengui. Analysis of Coronavirus Disease 2019 Chest High-resolution Computed Tomography Manifestations between Groups with Different Neutrophil- to-Lymphocyte Ratios[J]. CT Theory and Applications, 2023, 32(3): 387-394. DOI: 10.15953/j.ctta.2023.027
    [6]ZHANG Mingxia, LI Ling, SUN Ying, GUO Jia, DU Changyue, LI Xingpeng, ZHANG Yan, HAO Qi, DUAN Shuhong, LIU Xiaoyan, SUN Lei, HUO Meng, ZHANG Chunyan, WANG Rengui. Comparative Analysis of Clinical and Computed Tomography Imaging Features of COVID-19 with Different Disease Courses[J]. CT Theory and Applications, 2023, 32(3): 380-386. DOI: 10.15953/j.ctta.2023.021
    [7]WU Tenghui, ZHA Yunfei, YANG Feng. The Study of Application of Different Pitch Combined with ASIR in Low-dose Chest CT Screening on COVID-19[J]. CT Theory and Applications, 2022, 31(2): 186-194. DOI: 10.15953/j.1004-4140.2022.31.02.05
    [8]WEI Dongxu, YAN Lihua, SHI Junqiang. COVID-19 Deep Learning Diagnosis Method Based on Attention Mechanism and Transfer Learning[J]. CT Theory and Applications, 2021, 30(4): 477-486. DOI: 10.15953/j.1004-4140.2021.30.04.08
    [9]SHEN Jing, YU Jing, YAN Yingnan, SANG Yarong, JU Ronghui, PAN Long, LI Guize, LI Xin, WU Jianlin. Chest CT Features of COVID-19 and Its Evolution[J]. CT Theory and Applications, 2021, 30(2): 199-207. DOI: 10.15953/j.1004-4140.2021.30.02.07
    [10]YAO Yonggang, DU Jingbo, LIAO Jianyong, GOU Zhenheng, FU Shunbin, JIN Erhu. Study of Chest CT Features of COVID-19[J]. CT Theory and Applications, 2020, 29(2): 169-176. DOI: 10.15953/j.1004-4140.2020.29.02.07
  • Cited by

    Periodical cited type(3)

    1. 李杰成,柳淘,余鑫鑫,许州,周霖,邓阳全,马杰,马切,刘勇涛. X波段可移动加速器CT的运动控制系统设计. 核电子学与探测技术. 2025(05): 705-711 .
    2. 黄嘉秋,须颖,林鹏程. X射线CT几何校正研究. 中国机械. 2025(10): 28-37 .
    3. 张凯杰,丁婷,桂志国,陈平,刘祎,张鹏程,汤豪威. 基于自适应加权增强总变差的CT偏置扫描重建算法. 中国体视学与图像分析. 2024(02): 126-137 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return