ISSN 1004-4140
CN 11-3017/P
FENG H, XIE M G. Application Advancements of Radiomics in Predicting the Prognosis of Patients with Gastric Cancer[J]. CT Theory and Applications, xxxx, x(x): 1-7. DOI: 10.15953/j.ctta.2024.040. (in Chinese).
Citation: FENG H, XIE M G. Application Advancements of Radiomics in Predicting the Prognosis of Patients with Gastric Cancer[J]. CT Theory and Applications, xxxx, x(x): 1-7. DOI: 10.15953/j.ctta.2024.040. (in Chinese).

Application Advancements of Radiomics in Predicting the Prognosis of Patients with Gastric Cancer

More Information
  • Received Date: March 10, 2024
  • Revised Date: June 04, 2024
  • Accepted Date: June 05, 2024
  • Available Online: August 06, 2024
  • Gastric cancer has high morbidity and mortality; thus, accurate prognostic predictions before surgery are very important. Radiomics is a new and effective medical image technology that extracts high-dimensional features that are difficult to describe quantitatively from images and provides an evaluation of tumor heterogeneity and functional information on the tumor microenvironment, which has a high value in predicting the prognosis of patients with gastric cancer. This article reviews the application of radiomics for the prognostic prediction of patients with gastric cancer.

  • [1]
    SUNG H, FERLAY J, SIEGEL R, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. Ca-A Cancer Journal for Clinicians, 2021, 71: 209−249. DOI: 10.3322/caac.21660.
    [2]
    VEITCH A M, UEDO N, YAO K S, et al. Optimizing early upper gastrointestinal cancer detection at endoscopy[J]. Nature Reviews Gastroenterology & Hepatology, 2015, 12: 660−667.
    [3]
    MENON S, TRUDGILL N. How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis[J]. Endoscopy International Open, 2014, 2(2): E46−E50. DOI: 10.1055/s-0034-1365524.
    [4]
    LI H, FENG L Q, BIAN Y Y, et al. Comparison of endoscopic submucosal dissection with surgical gastrectomy for early gastric cancer: An updated meta-analysis[J]. World Journal of Gastrointestinal Oncology, 2019, 11: 161−171. DOI: 10.4251/wjgo.v11.i2.161.
    [5]
    JÁCOME A A, COUTINHO A K, LIMA E M, et al. Personalized medicine in gastric cancer: Where are we and where are we going?[J]. World Journal of Gastroenterology, 2016, 22: 1160−1171. DOI: 10.3748/wjg.v22.i3.1160.
    [6]
    AERTS HUGO J W L, VELAZQUEZ EMMANUEL RIOS, LEIJENAAR RALPH T H, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nature Communications, 2014, 5: 4006. DOI: 10.1038/ncomms5006.
    [7]
    ASSOCIATION J G C. Japanese gastric cancer treatment guidelines 2018 (5th edition)[J]. Gastric Cancer, 2020(S1): 1−21.
    [8]
    BENSON AL B, VENOOK ALAN P, AL-HAWARY MAHMOUD M, et al. Colon cancer, Version 2. 2021, NCCN clinical practice guidelines in oncology[J]. Journal of the National Comprehensive Cancer Network, 2021, 19: 329-359.
    [9]
    WANG Y, LIU W, YU Y, et al. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer[J]. European Radiology, 2020, 30: 976−986. DOI:10.1007/s00330-019- 06398-z.
    [10]
    GAO X J, MA T T, CUI J L, et al. A CT-based radiomics model for prediction of lymph node metastasis in early stage gastric cancer[J]. Academic Radiology, 2021, 28: e155-e164. 5.
    [11]
    ZHANG A Q, ZHAO H P, LI F, et al. Computed tomography-based deep-learning prediction of lymph node metastasis risk in locally advanced gastric cancer[J]. Frontiers in Oncology, 2022, 12: 969707. DOI: 10.3389/fonc.2022.969707.
    [12]
    CHEN W J, WANG S W, DONG D, et al. Evaluation of lymph node metastasis in advanced gastric cancer using magnetic resonance imaging-based radiomics[J]. Frontiers in Oncology, 2019, 9: 1265. DOI: 10.3389/fonc.2019.01265.
    [13]
    BOKU N. HER2-positive gastric cancer[J]. Gastric Cancer, 2014, 17(1): 1-12. DOI 10.1007/s10120-013-0252-z.
    [14]
    BANG Y J, VAN C E, FEYEREISLOVA A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial[J]. Lancet, 2010, 376: 687−697. DOI: 10.1016/S0140-6736(10)61121-X.
    [15]
    CHARALAMPAKIS N, ECONOMOPOULOU P, KOTSANTIS I, et al. Medical management of gastric cancer: A 2017 update[J]. Cancer Medicine, 2018, 7: 123−133. DOI: 10.1002/cam4.1274.
    [16]
    CUREA F G, HEBBAR M, ILIE SILVIA M, et al. Current targeted therapies in HER2-positive gastric adenocarcinoma[J]. Cancer Biotherapy and Radiopharmaceuticals, 2017, 32: 351−363. DOI: 10.1089/cbr.2017.2249.
    [17]
    LI Y X, CHENG Z X, GEVAERT O, et al. A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer[J]. Chinese Journal of Cancer Research, 2020, 32: 62−71. DOI: 10.21147/j.issn.1000-9604.2020.01.08.
    [18]
    GUAN X, LU N, ZHANG J P. Evaluation of epidermal growth factor receptor 2 status in gastric cancer by CT-based deep learning radiomics nomogram[J]. Frontiers in Oncology, 2022, 12: 905203. DOI: 10.3389/fonc.2022.905203.
    [19]
    LIU Q F, LI J R, XIN B W, et al. Preoperative F-FDG PET/CT radiomics analysis for predicting HER2 expression and prognosis in gastric cancer[J]. Quantitative Imaging in Medicine and Surgery, 2023, 13: 1537−1549. DOI: 10.21037/qims-22-148.
    [20]
    COCCOLINI F, COTTE E, GLEHEN O, et al. Intraperitoneal chemotherapy in advanced gastric cancer. Meta-analysis of randomized trials[J]. European Society of Surgical Oncology, 2014, 40: 12−26. DOI:10.1016/ j.ejso.2013.10.019.
    [21]
    KIM S J, KIM HYUNG-HO, KIM Y H, et al. Peritoneal metastasis: Detection with 16- or 64-detector row CT in patients undergoing surgery for gastric cancer[J]. Radiology, 2009, 253: 407−15. DOI: 10.1148/radiol.2532082272.
    [22]
    MIRNIAHARIKANDEHEI S, HEIDARI M, DANALA G, et al. Applying a random projection algorithm to optimize machine learning model for predicting peritoneal metastasis in gastric cancer patients using CT images[J]. Computer Methods and Programs in Biomedicine, 2021, 200: 105937. DOI: 10.1016/j.cmpb.2021.105937.
    [23]
    DONG D, TANG L, LI Z Y, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer[J]. Annals of Oncology, 2019, 30: 431−438. DOI: 10.1093/annonc/mdz001.
    [24]
    CHEN Y, XI W Q, YAO W W, et al. Dual-energy computed tomography-based radiomics to predict peritoneal metastasis in gastric cancer[J]. Frontiers in Oncology, 2021, 11: 659981. DOI: 10.3389/fonc.2021.659981.
    [25]
    HUANG Z X, LIU D, CHEN X Z, et al. Deep convolutional neural network based on computed tomography images for the preoperative diagnosis of occult peritoneal metastasis in advanced gastric cancer[J]. Frontiers in Oncology, 2020, 10: 601869. DOI: 10.3389/fonc.2020.601869.
    [26]
    JIANG Y M, LIANG X K, WANG W, et al. Noninvasive prediction of occult peritoneal metastasis in gastric cancer using deep learning[J]. Jama Network Open, 2021, 4: e2032269. DOI: 10.1001/jamanetworkopen.2020.32269.
    [27]
    LIU D, ZHANG W H, HU F B, et al. A Bounding box-based radiomics model for detecting occult peritoneal metastasis in advanced gastric cancer: A multicenter study[J]. Frontiers in Oncology, 2021, 11: 777760. DOI: 10.3389/fonc.2021.777760.
    [28]
    LI W C, ZHANG L W, TIAN C, et al. Prognostic value of computed tomography radiomics features in patients with gastric cancer following curative resection[J]. European Radiology, 2019, 29: 3079−3089. DOI: 10.1007/s00330-018-5861-9.
    [29]
    JIN Y, XU Y L, LI Y Y, et al. Integrative radiogenomics approach for risk assessment of postoperative and adjuvant chemotherapy benefits for gastric cancer patients[J]. Frontiers in Oncology, 2021, 11: 755271. DOI: 10.3389/fonc.2021.755271.
    [30]
    SHIN J, LIM J S, HUH Y M, et al. A radiomics-based model for predicting prognosis of locally advanced gastric cancer in the preoperative setting[J]. Scientific Reports, 2021, 11: 1879. DOI: 10.1038/s41598-021-81408-z.
    [31]
    JIANG Y M, JIN C, YU H, et al. Development and validation of a deep learning CT signature to predict survival and chemotherapy benefit in gastric cancer: A multicenter, retrospective study[J]. Annals of Surgery, 2021, 274: e1153−e1161. DOI: 10.1097/SLA.0000000000003778.
    [32]
    ZHANG L W, DONG D, ZHONG L Z, et al. Multi-focus network to decode imaging phenotype for overall survival prediction of gastric cancer patients[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25: 3933−3942. DOI: 10.1109/JBHI.2021.3087634.
    [33]
    CHEN W J, GAO C, HU C et al. Risk Stratification and Overall Survival Prediction in Advanced Gastric Cancer Patients Based on Whole-Volume MRI Radiomics.[J]. Journal of Magnetic Resonance Imaging, 2023, 58: 1161−1174. DOI: 10.1002/jmri.28621.
    [34]
    ZHANG C D, NING F L, ZENG X T, et al. Lymphovascular invasion as a predictor for lymph node metastasis and a prognostic factor in gastric cancer patients under 70 years of age: A retrospective analysis[J]. International Journal of Surgery, 2018, 53: 214−220. DOI: 10.1016/j.ijsu.2018.03.073.
    [35]
    YARDIMCI AYTÜL H, KOÇAK B, TURAN BEKTAŞ C, et al. Tubular gastric adenocarcinoma: machine learning-based CT texture analysis for predicting lymphovascular and perineural invasion[J]. Diagnostic and Interventional Radiology, 2020, 26: 515−522. DOI: 10.5152/dir.2020.19507.
    [36]
    CHEN X F, YANG Z Q, YANG J D, et al. Radiomics analysis of contrast-enhanced CT predicts lymphovascular invasion and disease outcome in gastric cancer: A preliminary study[J]. Cancer Imaging, 2020, 20: 24. DOI: 10.1186/s40644-020-00302-5.
    [37]
    JIA H, LI R Z, LIU Y W, et al. Preoperative prediction of perineural invasion and prognosis in gastric cancer based on machine learning through a radiomics-clinicopathological nomogram[J]. Cancers (Basel), 2024, 16: undefined.
    [38]
    HE YY, YANG M, HOU R, et al. Preoperative prediction of perineural invasion and lymphovascular invasion with CT radiomics in gastric cancer[J]. European Journal of Radiology, 2024, 12: 100550.
    [39]
    BOSSUYT P K M, REITSMA J B, BRUNS D E, et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies[J]. British Medical Journal, 2015, 351: h5527.
    [40]
    ZHANG Y M, WENG Y, LUND JONATHAN. Applications of Explainable Artificial Intelligence in Diagnosis and Surgery[J]. Diagnostics (Basel), 2022, 12: undefined.
    [41]
    PANTELIS L, VASILIS P, SOTIRIS K. Explainable AI: A review of machine learning interpretability methods[J]. Entropy (Basel, Switzerland), 2020, 23(1):

Catalog

    Article views (116) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return