ISSN 1004-4140
CN 11-3017/P
FENG H, XIE M G. Application Advancements of Radiomics in Predicting the Prognosis of Patients with Gastric Cancer[J]. CT Theory and Applications, xxxx, x(x): 1-7. DOI: 10.15953/j.ctta.2024.040. (in Chinese).
Citation: FENG H, XIE M G. Application Advancements of Radiomics in Predicting the Prognosis of Patients with Gastric Cancer[J]. CT Theory and Applications, xxxx, x(x): 1-7. DOI: 10.15953/j.ctta.2024.040. (in Chinese).

Application Advancements of Radiomics in Predicting the Prognosis of Patients with Gastric Cancer

More Information
  • Received Date: March 10, 2024
  • Revised Date: June 04, 2024
  • Accepted Date: June 05, 2024
  • Available Online: August 06, 2024
  • Gastric cancer has high morbidity and mortality; thus, accurate prognostic predictions before surgery are very important. Radiomics is a new and effective medical image technology that extracts high-dimensional features that are difficult to describe quantitatively from images and provides an evaluation of tumor heterogeneity and functional information on the tumor microenvironment, which has a high value in predicting the prognosis of patients with gastric cancer. This article reviews the application of radiomics for the prognostic prediction of patients with gastric cancer.

  • [1]
    SUNG H, FERLAY J, SIEGEL R, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. Ca-A Cancer Journal for Clinicians, 2021, 71: 209−249. DOI: 10.3322/caac.21660.
    [2]
    VEITCH A M, UEDO N, YAO K S, et al. Optimizing early upper gastrointestinal cancer detection at endoscopy[J]. Nature Reviews Gastroenterology & Hepatology, 2015, 12: 660−667.
    [3]
    MENON S, TRUDGILL N. How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis[J]. Endoscopy International Open, 2014, 2(2): E46−E50. DOI: 10.1055/s-0034-1365524.
    [4]
    LI H, FENG L Q, BIAN Y Y, et al. Comparison of endoscopic submucosal dissection with surgical gastrectomy for early gastric cancer: An updated meta-analysis[J]. World Journal of Gastrointestinal Oncology, 2019, 11: 161−171. DOI: 10.4251/wjgo.v11.i2.161.
    [5]
    JÁCOME A A, COUTINHO A K, LIMA E M, et al. Personalized medicine in gastric cancer: Where are we and where are we going?[J]. World Journal of Gastroenterology, 2016, 22: 1160−1171. DOI: 10.3748/wjg.v22.i3.1160.
    [6]
    AERTS HUGO J W L, VELAZQUEZ EMMANUEL RIOS, LEIJENAAR RALPH T H, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nature Communications, 2014, 5: 4006. DOI: 10.1038/ncomms5006.
    [7]
    ASSOCIATION J G C. Japanese gastric cancer treatment guidelines 2018 (5th edition)[J]. Gastric Cancer, 2020(S1): 1−21.
    [8]
    BENSON AL B, VENOOK ALAN P, AL-HAWARY MAHMOUD M, et al. Colon cancer, Version 2. 2021, NCCN clinical practice guidelines in oncology[J]. Journal of the National Comprehensive Cancer Network, 2021, 19: 329-359.
    [9]
    WANG Y, LIU W, YU Y, et al. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer[J]. European Radiology, 2020, 30: 976−986. DOI:10.1007/s00330-019- 06398-z.
    [10]
    GAO X J, MA T T, CUI J L, et al. A CT-based radiomics model for prediction of lymph node metastasis in early stage gastric cancer[J]. Academic Radiology, 2021, 28: e155-e164. 5.
    [11]
    ZHANG A Q, ZHAO H P, LI F, et al. Computed tomography-based deep-learning prediction of lymph node metastasis risk in locally advanced gastric cancer[J]. Frontiers in Oncology, 2022, 12: 969707. DOI: 10.3389/fonc.2022.969707.
    [12]
    CHEN W J, WANG S W, DONG D, et al. Evaluation of lymph node metastasis in advanced gastric cancer using magnetic resonance imaging-based radiomics[J]. Frontiers in Oncology, 2019, 9: 1265. DOI: 10.3389/fonc.2019.01265.
    [13]
    BOKU N. HER2-positive gastric cancer[J]. Gastric Cancer, 2014, 17(1): 1-12. DOI 10.1007/s10120-013-0252-z.
    [14]
    BANG Y J, VAN C E, FEYEREISLOVA A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial[J]. Lancet, 2010, 376: 687−697. DOI: 10.1016/S0140-6736(10)61121-X.
    [15]
    CHARALAMPAKIS N, ECONOMOPOULOU P, KOTSANTIS I, et al. Medical management of gastric cancer: A 2017 update[J]. Cancer Medicine, 2018, 7: 123−133. DOI: 10.1002/cam4.1274.
    [16]
    CUREA F G, HEBBAR M, ILIE SILVIA M, et al. Current targeted therapies in HER2-positive gastric adenocarcinoma[J]. Cancer Biotherapy and Radiopharmaceuticals, 2017, 32: 351−363. DOI: 10.1089/cbr.2017.2249.
    [17]
    LI Y X, CHENG Z X, GEVAERT O, et al. A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer[J]. Chinese Journal of Cancer Research, 2020, 32: 62−71. DOI: 10.21147/j.issn.1000-9604.2020.01.08.
    [18]
    GUAN X, LU N, ZHANG J P. Evaluation of epidermal growth factor receptor 2 status in gastric cancer by CT-based deep learning radiomics nomogram[J]. Frontiers in Oncology, 2022, 12: 905203. DOI: 10.3389/fonc.2022.905203.
    [19]
    LIU Q F, LI J R, XIN B W, et al. Preoperative F-FDG PET/CT radiomics analysis for predicting HER2 expression and prognosis in gastric cancer[J]. Quantitative Imaging in Medicine and Surgery, 2023, 13: 1537−1549. DOI: 10.21037/qims-22-148.
    [20]
    COCCOLINI F, COTTE E, GLEHEN O, et al. Intraperitoneal chemotherapy in advanced gastric cancer. Meta-analysis of randomized trials[J]. European Society of Surgical Oncology, 2014, 40: 12−26. DOI:10.1016/ j.ejso.2013.10.019.
    [21]
    KIM S J, KIM HYUNG-HO, KIM Y H, et al. Peritoneal metastasis: Detection with 16- or 64-detector row CT in patients undergoing surgery for gastric cancer[J]. Radiology, 2009, 253: 407−15. DOI: 10.1148/radiol.2532082272.
    [22]
    MIRNIAHARIKANDEHEI S, HEIDARI M, DANALA G, et al. Applying a random projection algorithm to optimize machine learning model for predicting peritoneal metastasis in gastric cancer patients using CT images[J]. Computer Methods and Programs in Biomedicine, 2021, 200: 105937. DOI: 10.1016/j.cmpb.2021.105937.
    [23]
    DONG D, TANG L, LI Z Y, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer[J]. Annals of Oncology, 2019, 30: 431−438. DOI: 10.1093/annonc/mdz001.
    [24]
    CHEN Y, XI W Q, YAO W W, et al. Dual-energy computed tomography-based radiomics to predict peritoneal metastasis in gastric cancer[J]. Frontiers in Oncology, 2021, 11: 659981. DOI: 10.3389/fonc.2021.659981.
    [25]
    HUANG Z X, LIU D, CHEN X Z, et al. Deep convolutional neural network based on computed tomography images for the preoperative diagnosis of occult peritoneal metastasis in advanced gastric cancer[J]. Frontiers in Oncology, 2020, 10: 601869. DOI: 10.3389/fonc.2020.601869.
    [26]
    JIANG Y M, LIANG X K, WANG W, et al. Noninvasive prediction of occult peritoneal metastasis in gastric cancer using deep learning[J]. Jama Network Open, 2021, 4: e2032269. DOI: 10.1001/jamanetworkopen.2020.32269.
    [27]
    LIU D, ZHANG W H, HU F B, et al. A Bounding box-based radiomics model for detecting occult peritoneal metastasis in advanced gastric cancer: A multicenter study[J]. Frontiers in Oncology, 2021, 11: 777760. DOI: 10.3389/fonc.2021.777760.
    [28]
    LI W C, ZHANG L W, TIAN C, et al. Prognostic value of computed tomography radiomics features in patients with gastric cancer following curative resection[J]. European Radiology, 2019, 29: 3079−3089. DOI: 10.1007/s00330-018-5861-9.
    [29]
    JIN Y, XU Y L, LI Y Y, et al. Integrative radiogenomics approach for risk assessment of postoperative and adjuvant chemotherapy benefits for gastric cancer patients[J]. Frontiers in Oncology, 2021, 11: 755271. DOI: 10.3389/fonc.2021.755271.
    [30]
    SHIN J, LIM J S, HUH Y M, et al. A radiomics-based model for predicting prognosis of locally advanced gastric cancer in the preoperative setting[J]. Scientific Reports, 2021, 11: 1879. DOI: 10.1038/s41598-021-81408-z.
    [31]
    JIANG Y M, JIN C, YU H, et al. Development and validation of a deep learning CT signature to predict survival and chemotherapy benefit in gastric cancer: A multicenter, retrospective study[J]. Annals of Surgery, 2021, 274: e1153−e1161. DOI: 10.1097/SLA.0000000000003778.
    [32]
    ZHANG L W, DONG D, ZHONG L Z, et al. Multi-focus network to decode imaging phenotype for overall survival prediction of gastric cancer patients[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25: 3933−3942. DOI: 10.1109/JBHI.2021.3087634.
    [33]
    CHEN W J, GAO C, HU C et al. Risk Stratification and Overall Survival Prediction in Advanced Gastric Cancer Patients Based on Whole-Volume MRI Radiomics.[J]. Journal of Magnetic Resonance Imaging, 2023, 58: 1161−1174. DOI: 10.1002/jmri.28621.
    [34]
    ZHANG C D, NING F L, ZENG X T, et al. Lymphovascular invasion as a predictor for lymph node metastasis and a prognostic factor in gastric cancer patients under 70 years of age: A retrospective analysis[J]. International Journal of Surgery, 2018, 53: 214−220. DOI: 10.1016/j.ijsu.2018.03.073.
    [35]
    YARDIMCI AYTÜL H, KOÇAK B, TURAN BEKTAŞ C, et al. Tubular gastric adenocarcinoma: machine learning-based CT texture analysis for predicting lymphovascular and perineural invasion[J]. Diagnostic and Interventional Radiology, 2020, 26: 515−522. DOI: 10.5152/dir.2020.19507.
    [36]
    CHEN X F, YANG Z Q, YANG J D, et al. Radiomics analysis of contrast-enhanced CT predicts lymphovascular invasion and disease outcome in gastric cancer: A preliminary study[J]. Cancer Imaging, 2020, 20: 24. DOI: 10.1186/s40644-020-00302-5.
    [37]
    JIA H, LI R Z, LIU Y W, et al. Preoperative prediction of perineural invasion and prognosis in gastric cancer based on machine learning through a radiomics-clinicopathological nomogram[J]. Cancers (Basel), 2024, 16: undefined.
    [38]
    HE YY, YANG M, HOU R, et al. Preoperative prediction of perineural invasion and lymphovascular invasion with CT radiomics in gastric cancer[J]. European Journal of Radiology, 2024, 12: 100550.
    [39]
    BOSSUYT P K M, REITSMA J B, BRUNS D E, et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies[J]. British Medical Journal, 2015, 351: h5527.
    [40]
    ZHANG Y M, WENG Y, LUND JONATHAN. Applications of Explainable Artificial Intelligence in Diagnosis and Surgery[J]. Diagnostics (Basel), 2022, 12: undefined.
    [41]
    PANTELIS L, VASILIS P, SOTIRIS K. Explainable AI: A review of machine learning interpretability methods[J]. Entropy (Basel, Switzerland), 2020, 23(1):
  • Related Articles

    [1]QIN Huilin, OU Jing, GOU Yueqin, WANG Yuesu, LUO Hui, ZHANG Xiaoming, FU Maoyong, CHEN Tianwu. Computed Tomography Radiomics to Preoperatively Predict Regional Lymph Node Metastasis of Resectable Adenocarcinoma of the Esophagogastric Junction[J]. CT Theory and Applications, 2025, 34(3): 427-438. DOI: 10.15953/j.ctta.2025.060
    [2]LIU Xin, WANG Yuesu, QIN Huilin, ZHANG Xiaoming, CHEN Tianwu. Models Developed Based on Baseline Gastric Cancer and Metastatic Lymph Node CT Radiomics and Clinical Features for Predicting Early Postoperative Lymph Node Recurrence[J]. CT Theory and Applications, 2025, 34(2): 273-284. DOI: 10.15953/j.ctta.2024.276
    [3]CHEN Xiao, YANG Bin. The Application of Radiomics in the Prognosis of Non-small Cell Lung Cancer[J]. CT Theory and Applications, 2024, 33(3): 385-390. DOI: 10.15953/j.ctta.2023.071
    [4]ZHOU Hui, FENG Feng. Enhancing Esophageal Cancer Prognosis and Treatment Evaluation: Recent Advances in Computed Tomography Radiomics[J]. CT Theory and Applications, 2024, 33(3): 377-383. DOI: 10.15953/j.ctta.2023.155
    [5]XUE Ruihong, WU Tingting, CHAI Jun, ZHANG Yujie, LIANG Enhe, ZHENG Zhiqiang. Radiomics-based Nomogram for Predicting Invasiveness of Subsolid Pulmonary Nodules[J]. CT Theory and Applications, 2024, 33(3): 343-350. DOI: 10.15953/j.ctta.2023.213
    [6]BA Wenjuan, ZHU Yanlin, WEI Mei, YIN Ke. Advances in the Preoperative Prediction of the Spread of Lung Adenocarcinoma Through Air Spaces Using CT Features[J]. CT Theory and Applications, 2024, 33(1): 91-96. DOI: 10.15953/j.ctta.2022.236
    [7]LI Manman, FU Yigang, XIAO Yong, CHEN Wang, FENG Feng, XU Guodong. CT Radiomics Nomogram Prediction for Tumor Deposits and Prognosis in Colorectal Cancer[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.055
    [8]ZHOU Jie, ZHENG Yanting, JIANG Shuqi, AN Jie, QIU Shijun, CHEN Huai. Machine Learning Prediction Models for Staging of Non-small Cell Lung Cancer Patients Using Radiomics[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.186
    [9]CHENG Changfa, CHEN Huilin, ZHAI Yanan, GUO Shunlin. Advances in Radiomics for Predicting Intraoperative Hemodynamic Instability in Pheochromocytoma Surgery[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.248
    [10]LIU Yuting, LIU Aishi. Research Progress of Radiomics in the Diagnosis of Pulmonary Nodules[J]. CT Theory and Applications, 2023, 32(4): 573-578. DOI: 10.15953/j.ctta.2022.056
  • Cited by

    Periodical cited type(2)

    1. 邓扬,陆金琦,余信江,胡超. 一种结合弹性波CT正演模拟与钻孔注水法的防渗墙检测方法研究. 计算机测量与控制. 2024(03): 125-130 .
    2. 何继善,李帝铨,胡艳芳,凌帆,王金海. 城市强干扰环境地下空间探测技术与应用. 工程地球物理学报. 2022(05): 559-567 .

    Other cited types(3)

Catalog

    Article views (120) PDF downloads (25) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return