ISSN 1004-4140
CN 11-3017/P
WANG Y X, WANG P G, YANG S W, et al. Application Value of Variable Exposure Conditions in One-stop Cerebral Computed Tomography Imaging[J]. CT Theory and Applications, 2025, 34(3): 461-468. DOI: 10.15953/j.ctta.2024.143. (in Chinese).
Citation: WANG Y X, WANG P G, YANG S W, et al. Application Value of Variable Exposure Conditions in One-stop Cerebral Computed Tomography Imaging[J]. CT Theory and Applications, 2025, 34(3): 461-468. DOI: 10.15953/j.ctta.2024.143. (in Chinese).

Application Value of Variable Exposure Conditions in One-stop Cerebral Computed Tomography Imaging

More Information
  • Received Date: July 21, 2024
  • Revised Date: December 09, 2024
  • Accepted Date: December 17, 2024
  • Available Online: January 20, 2025
  • Objective: To compare the imaging quality and radiation dose under fixed and variable exposure conditions and to determine the value of variable exposure conditions in a one-stop cranial computed tomography (CT). Methods: One hundred patients who required one-stop head CT scanning because of cerebrovascular disease at our hospital between March and May 2024 were prospectively selected and randomly divided into groups A and B, with 50 patients in each group. All patients underwent the first phase of scanning at 5~65s after contrast injection, and a total of 18 scanning phases were performed. In group A, all patients underwent the same exposure conditions for all scan phases, with a tube voltage of 100 kV and tube current of 100 mAs. In group B, the patients were scanned with different tube currents according to the different diagnostic purposes of each phase of the image data. The CT values and noise of the gray matter, white matter, and extra-cranial air in the cerebral hemisphere during normal scans were measured using CT post-processing workstation, and the contrast noise ratio (CNR) of the images was calculated. The CT values and noise in the intracranial artery and parenchyma were measured using computed tomography angiography (CTA) images, and the CNR was calculated. Perfusion parameters such as cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to peak (TTP) in the computer-to-plate-performed image were measured, and a five-point scale was used to subjectively evaluate the image quality at each stage. The Shapiro–Wilk test was performed to test the normality of objective indicators, and an independent sample t-test was used to compare objective indicators between the two groups. The Wilcoxon signed-rank test was used to compare subjective scores. Results: The CNRp and subjective scores of the plain scan images in group B were better than those in group A. The CTA image noise in group B was lower than that in group A, and the CNRa and subjective score in group B was higher than that in group A. However, the perfusion parameters of CTP in group B did not differ significantly from those in group A. The dose length product (DLP) in group B was increased by approximately 0.65% compared with that in group A. Conclusion: Compared with the fixed exposure condition group, the image quality of the one-stop cranial CT under variable exposure conditions was significantly improved. No significant differences were observed in any perfusion parameter, and the overall radiation dose was not significantly increased, providing better image quality than that under fixed exposure conditions.

  • [1]
    彭斌, 刘鸣, 崔丽英, 等. 中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志, 2018, 51(9): 666-682. DOI: 10.3760/cma.j.issn.1006-7876.2018.09.004.

    PENG B, LIU M, Cui L Y, et al. interpretation of the Chinese guidelines for diagnosis and treatment of acute ischemic stroke 2018[J]. Chinese Journal of Neurology, 2018, 51(9): 666-682. DOI:10.3760/cma.j.issn.1006-7876.2018.09.004. (in Chinese).
    [2]
    中华医学会影像技术分会. 急性脑卒中多层螺旋CT检查技术专家共识[J]. 中华放射学杂志, 2020, 54(9): 839-845. DOI: 10.3760/cma.j.cn112149-20191226-01008.

    Chinese Society of Imaging Technology Chinese Medical Association. Expert consensus on multi-slice spiral CT examination for acute stroke[J]. 2020, 54(9): 839-845. DOI:10.3760/cma.j.cn112149-20191226-01008. (in Chinese).
    [3]
    于蒙蒙, 任昕晨, 邓雯雯, 等. 全脑CT灌注联合头颈部CTA“一站式”检查在前循环急性缺血性脑卒中的诊断价值[J]. 中国CT和MRI杂志, 2023, 21(7): 8-11. DOI: 10.3969/j.issn.1672-5131.2023.07.003.

    YU M M, REN X C, DENG W W, et al. The value of whole brain CT perfusion imaging combined with head and neck CTA one-stop examination in the diagnosis of anterior circulation acute ischemic stroke[J] Chinese Journal of CT and MRI, 2023, 21(7): 8-11. DOI:10.3969/j.issn.1672-5131.2023.07.003. (in Chinese).
    [4]
    BIVARD A, PARSONS M. Tissue is more important than time: Insights into acute ischemic stroke from modern brain imaging[J]. Current Opinion in Neurology, 2018, 31(1): 23-27. DOI: 10.1097/WCO.0000000000000520.
    [5]
    蔡培, 徐凯, 牛磊, 等. 双低技术在iCT全脑灌注成像中的应用研究[J]. 医学影像学杂志, 2019, 29(10): 1656-1660. DOI: CNKI:SUN:XYXZ.0.2019-10-009.

    CAI P, XU K, NIU L, et al. Case study about the application of the double low techniques on the whole brain iCT perfusion imaging[J]. Journal of Medical Imaging, 2019, 29(10): 1656-1660. DOI:CNKI:SUN:XYXZ.0.2019-10-009. (in Chinese).
    [6]
    李文, 张志伟, 左子钰, 等. 双层探测器光谱CT虚拟单能量CTA技术对脑血管成像的价值[J]. CT理论与应用研究(中英文), 2024, 33(6): 669-675. DOI: 10.15953/j.ctta.2024.074.

    LI W, ZHANG Z W, ZUO Z Y, et al. The value of virtual monoenergetic computed tomography angiography with dual-layer detector spectral computed tomography for imaging cerebral vessels[J]. CT Theory and Applications, 2024, 33(6): 669-675. DOI: 10.15953/j.ctta.2024.074. (in Chinese).
    [7]
    OZDOBA C, SLOTBOOM J, SCHROTH G, et al. Dose reduction in standard head CT: First results from a new scanner using iterative reconstruction and a new detector type in comparison with two previous generations of multi-slice CT[J]. Clinical Neuroradiology, 2014, 24(1): 23-28. DOI: 10.1007/s00062-013-0263-5.
    [8]
    杨尚文, 邵明冉, 杨献峰, 等. 三低"技术联合全模型迭代重建算法在头颈部CT血管成像中的可行性研究[J]. 中华放射医学与防护杂志, 2017, 37(1): 62-67. DOI: 10.3760/cma.j.issn.0254-5098.2017.01.012.

    YANG S W, SHAO M R, YANG X F, et al. A feasibility study on " Tri-Low" technology in combination with iterative model reconstruction (IMR) algorithm in CT angiography (CTA) of the head-and-neck vessels[J]. Chinese Journal of Radiological Medicine and Protection, 2017, 37(1): 62-67. DOI: 10.3760/cma.j.issn.0254-5098.2017.01.012. (in Chinese).
    [9]
    LI Z L, LI H, ZHANG K, et al. Improvement of image quality and radiation dose of CT perfusion of the brain by means of low-tube voltage (70kV)[J]. European Radiology, 2014, 24(8): 1906-1913. DOI: 10.1007/s00330-014-3247-1.
    [10]
    FURIE K L, JAYARAMAN M V. 2018 guidelines for the early management of patients with acute ischemic stroke[J]. Stroke, 2018, 49(3): 509-510. DOI: 10.1161/STROKEAHA.118.020176.
    [11]
    黄晓颖, 暴云锋, 李霞敏, 等. 人工智能在基于颅脑 CT灌注数据血管后处理的应用[J]. 中华放射学杂志, 2021, 55(8): 817-822. DOI: 10.3760/cma.j.cn112149-20200914-01087.

    HUANG X Y, BAO Y F, LI X M, et al. Application of artificial intelligence in vascular reconstruction based on cerebral CT perfusion data[J]. Chinese Journal of Radiology, 2021, 55(8): 817-822. DOI: 10.3760/cma.j.cn112149-20200914-01087. (in Chinese).
    [12]
    WARNER J J, HARRINGTON R A, SACCO R L, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke[J]. Stroke, 2019, 50(12): 3331-3332. DOI: 10.1161/STR.0000000000000211. (in Chinese).
    [13]
    刘青, 李伟粟, 王娇娇, 等. 全脑CT灌注成像在侧枝循环评估中的辐射剂量和临床应用价值[J]. 中华放射医学与防护杂志, 2024, 44(1): 47-52. DOI: 10.3760/cma.j.cn112271-20230609-00187.

    LIU Q, LI W L, WANG J J, et al. Radiation dose and clinical value of whole-brain CT perfusion imaging in the assessment of collateral circulation[J]. Chinese Journal of Radiological Medicine and Protection, 2024, 44(1): 47-52. DOI: 10.3760/cma.j.cn112271-20230609-00187. (in Chinese).
    [14]
    FANG X K, NI Q Q, SCHOEPF U J, et al. Image quality, radiation dose and diagnostic accuracy of 70kVp whole brain volumetric CT perfusion imaging: A preliminary study[J]. European Radiology, 2016, 26(11): 4184-4193. DOI: 10.1007/s00330-016-4225-6.
    [15]
    逯瑶, 李玲, 曹若瑶, 等. 四维CT血管造影-CT灌注成像评价烟雾病及烟雾综合征侧支循环及其与脑血流动力学关系的研究[J]. 中华放射学杂志, 2023, 57(3): 252-258. DOI: 10.3760/cma.j.cn112149-20220401-00296.

    LU Y, LI L, CAO R Y, et al. Correlation between collateral circulation and cerebral hemodynamics in moyamoya disease and moyamoya syndrome based on 4-dimensional CT angiography-CT perfusion[J]. Chinese Journal of Radiology, 2023, 57(3): 252-258. DOI: 10.3760/cma.j.cn112149-20220401-00296. (in Chinese).
    [16]
    CHUNG C Y, HU R, PETERSON R B, et al. Automated processing of head CT perfusion imaging for ischemic stroke triage: A practical guide to quality assurance and interpretation[J]. American Journal of Roentgenology, 2021, 217(6): 1401-1416. DOI: 10.2214/AJR.21.26139.
    [17]
    雷丽敏, 周宇涵, 郭晓旭, 等. 基于深度学习重建算法的低剂量CT脑灌注扫描可行性初步研究[J]. 中华放射医学与防护杂志, 2024, 44(7): 613-621. DOI: 10.3760/cma.j.cnl12271-20231020-00128.

    LEI L M, ZHOU Y H, GUO X X, et al. Feasibility of low-dose CT brain perfusion scanning based on deep learning reconstruction algorithm: A preliminary study[J]. Chinese Journal of Radiological Medicine and Protection, 2024, 44(7): 613-621. DOI: 10.3760/cma.j.cnl12271-20231020-00128. (in Chinese).
    [18]
    向勇生, 徐卫国, 史鹰勤, 等. 双低剂量联合增加扫描时间间隔对头颅320排CT灌注的灌注参数和放射剂量影响分析[J]. 中国医学计算机成像杂志, 2019, 25(3): 311-315. DOI: 10.19627/j.cnki.cn31-1700/th.2019.03.022.

    XIANG Y S, XU W G, SHI Y Q, et al. Effects of low dose combined with increasing scan time interval on perfusion parameters and radiation dose in head 320-row CT perfusion[J]. Chinese Journal of Medical Computer Imaging, 2019, 25(3): 311-315. DOI: 10.19627/j.cnki.cn31-1700/th.2019.03.022. (in Chinese).
    [19]
    王雁南, 周俊林, 那飞扬, 等. 基于低辐射剂量全脑CT灌注评估急性缺血性脑卒中侧支循环的研究[J]. 中国医学物理学杂志, 2023, 40(8): 950-956. DOI: 10.3969/j.issn.1005-202X.2023.08.005.

    WANG Y N, ZHOU J L, NA F Y, et al. Collateral circulation assessment in acute ischemic stroke based on low dose whole brain CT perfusion[J]. Chinese Journal of Medical Physics, 2023, 40(8): 950-956. DOI: 10.3969/j.issn.1005-202X.2023.08.005. (in Chinese).
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (52) PDF downloads (13) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return