ISSN 1004-4140
CN 11-3017/P
CHANG K, DENG X H, CHENG M. Detection of Stratigraphic Structure and Surrounding Buried Faults in Complex Urban Areas: Case Study of East Lake High-tech Zone[J]. CT Theory and Applications, 2025, 34(2): 217-224. DOI: 10.15953/j.ctta.2024.283. (in Chinese).
Citation: CHANG K, DENG X H, CHENG M. Detection of Stratigraphic Structure and Surrounding Buried Faults in Complex Urban Areas: Case Study of East Lake High-tech Zone[J]. CT Theory and Applications, 2025, 34(2): 217-224. DOI: 10.15953/j.ctta.2024.283. (in Chinese).

Detection of Stratigraphic Structure and Surrounding Buried Faults in Complex Urban Areas: Case Study of East Lake High-tech Zone

More Information
  • Received Date: December 03, 2024
  • Revised Date: January 22, 2025
  • Accepted Date: January 25, 2025
  • Available Online: February 09, 2025
  • Geological information such as stratigraphic structure characteristics, location of hidden faults, geometric characteristics, and overburden thickness in complex urban areas is extremely important for major engineering constructions such as light rail and intercity trains. The shallow seismic reflection method can identify the geometric features of concealed faults, including their strike as well as the dip and buried depth of the upper breakpoint; additionally, it can finely delineate strata and obtain information regarding the overburden thickness. However, using vibroseis vehicles for seismic exploration in urban areas is unfeasible, thus rendering it impossible to investigate the detection of complex urban stratum structures and concealed faults. To address the practical challenges encountered in complex urban environments, seismic reflection is used and microtremor detection is performed in this study to investigate concealed faults and stratum structures in cities. By utilizing the velocity structure obtained from microtremor detection in the blind spots of seismic exploration, we can obtain insights into the underground spatial structure of urban areas, thus facilitating the assessment of the overburden thickness, the depth of highly weathered and moderately weathered bedrock, and other information. Additionally, by combining drilling data, we analyze the overburden thickness, concealed faults, and stratum structures in the target area, thus effectively avoiding urban detection blind spots and realizing entire-region and multimeans detection. This combination of technologies provides new ideas for conducting geophysical work in similar cities, thus offering scientific significance and promotional value.

  • [1]
    东湖高新区域地震安全性评价报告[R]. 武汉地震工程研究院有限公司. 2021.

    The serial community is required for the seismic safety evaluation report of the East Lake High tech zone[R]. Wuhan Earthquake Engineering Research Institute Co., Ltd. 2021. (in Chinese).
    [2]
    林松, 王薇, 邓小虎, 等. 三峡库区典型滑坡地球物理实测及其意义: 以万州区四方碑滑坡为例[J]. 地球科学, 2019, 44(9): 3135-3146.

    LIN S, WANG W, DENG X H, et al. Geophysical observation of typical landslides in Three Gorges Reservoir Area and its significance: A case study of Sifangbei Landslide in Wanzhou district[J]. Earth Science, 2019, 44(9): 3135-3146. (in Chinese).
    [3]
    方盛明, 张先康, 刘保金, 等. 城市活断层地震勘探的最佳组合方法与应用研究[J]. 地震地质, 2006, 28(4): 646-654.

    FANG S M, ZHANG X K, LIU B J, et al. The best combination methods and applied researchof seismic prospecting for active faults in urban area[J]. Seismology and Geology, 2006, 28(4): 646-654. (in Chinese).
    [4]
    蔡祖华, 刘宏岳, 郑金伙, 等. 微动技术在城市地下病害体探测中的应用研究[J]. 工程地球物理学报, 2021, 18(6): 893-902. DOI: 10.3969/j.issn.1672-7940.2021.06.011.

    CAI Z H, LIU H Y, ZHENG J H, et al. Research and ap-plication of micromotion technology in the detection of urban underground disease body[J]. Chinese Journal of Engineering Geophysics, 2021, 18(6): 893-902. DOI: 10.3969/j.issn.1672-7940.2021.06.011. (in Chinese).
    [5]
    林松, 唐启家, 李媛, 等. 鄂西丹江口水库区域周边断裂构造解析及特征[J]. 地球科学, 2017, 42(10): 1830-1841.

    LIN S, TANG Q J, LI Y, et al. Analysis and characteristics of faults a-round Danjiangkou reservoir, West Hubei provience[J]. Earth Science, 2017, 42(10) : 1830-1841. (in Chinese).
    [6]
    周学明. 高分辨地震反射在铁路工程断裂勘察中的研究[J]. 铁道工程学报, 2016, 25(8): 26-29.

    ZHOU X M. Research on high-resolution seismic reflection in railway engineering fault investigation[J]. Journal of Railway Engineering Society, 2016, 25(8): 26-29. (in Chinese).
    [7]
    李志华. 铁路煤矿采空区综合物探技术研究[J]. 铁道工程学报, 2014, 31(10): 26-31.

    LI Z H. Research on comprehensive geophysical prospecting technology for railway goaf areas[J]. Journal of Railway Engineering Society, 2014, 31(10): 26-31. (in Chinese).
    [8]
    林朝旭. 地铁盾构区间孤石与基岩凸起等不良地质体探测新方法[J]. 工程地球物理学报, 2018, 15(4): 432-439.

    LIN Z X. New methods for detecting adverse geological bodies such as lone stones and bedrock protrusions in metro shield tunneling sections[J]. Chinese Journal of Engineering Geophysics, 2018, 15(4): 432-439. (in Chinese).
    [9]
    李应战, 计鹏, 张德强, 等. 综合物探技术在城市轨道交通不良地质体探测中的应用分析[J]. 工程地球物理学报, 2023, 20(4): 471-479. DOI: 10.3969/j.issn.1672-7940.2023.04.005.

    LI Y Z, JI P, ZHANG D Q, et al. Application analysis of comprehensive geophysical prospecting technology in detecting adverse geological bodies in urban rail transit[J]. Chinese Journal of Engineering Geophysics, 2023, 20(4): 471-479. DOI: 10.3969/j.issn.1672-7940.2023.04.005. (in Chinese).
    [10]
    刘杨, 盛勇, 贾慧涛. 利用微动高分辨率频率—波数谱法探测技术勘探地热资源[J]. 工程地球物理学报, 2021, 18(1): 35-43.

    LIU Y, SHENG Y, JIA H T. Exploration of geothermal resources using high-resolution frequency-wavenumber spectral method of microtremor[J]. Chinese Journal of Engineering Geophysics, 2021, 18(1): 35-43. (in Chinese).
    [11]
    晏雁. 微动勘探技术在煤矿隐蔽致灾地质因素探测中的应用[J]. 工程地球物理学报, 2024, 21(4): 578-586.

    YAN Y. Application of microtremor exploration technology in detecting hidden disaster geological factors in coal mines[J]. Chinese Journal of Engineering Geophysics, 2024, 21(4): 578-586. (in Chinese).
    [12]
    刘黎东. 微动技术在城区不良地质体勘察中的应用研究[J]. 铁道工程学报, 2019, 36(5): 1-5.

    LIU L D. Research on the application of microtremor technology in urban adverse geological body investigation[J]. Journal of Railway Engineering Society, 2019, 36(5): 1-5. (in Chinese).
    [13]
    刘铁华. 城市钻探盲区的地质勘探方法研究与应用[J]. 铁道工程学报, 2019, 36(10): 88-93. DOI: 10.3969/j.issn.1006-2106.2019.10.016.

    LIU T H. Research and application of geological exploration methods in urban drilling blind areas[J]. Journal of Railway Engineering Society, 2019, 36(10): 88-93. DOI: 10.3969/j.issn.1006-2106.2019.10.016. (in Chinese).
    [14]
    金聪, 林松, 程邈, 等. 冻土路基微动探测方法应用探讨[J]. 大地测量与地球动力学, 2021, 41(2): 221-216.

    JIN C, LIN S, CHENG M, et al. Discussion on the application of microtremor detection methods in frozen soil subgrade[J]. Journal of Geodesy and Geodynamics, 2021, 41(2): 221-216. (in Chinese).
    [15]
    李井冈, 谢朋, 王秋良, 等. 不同台阵形式对微动探测结果的影响[J]. 大地测量与地球动力学, 2020, 40(1): 98-103.

    LI J G, XIE P, WANG Q L, et al. Influence of different array forms on microtremor detection results[J]. Journal of Geodesy and Geodynamics, 2020, 40(1): 98-103. (in Chinese).
    [16]
    陈璘. 襄樊−广济断裂湖北段构造特征研究[J]. 石油实验地质, 2009, 31(2): 186-191.

    CHEN L. Study on the structural characteristics of the Hubei section of the Xiangfan-Guangji fault[J]. Petroleum Geology & Experiment, 2009, 31(2): 186-191. (in Chinese).
    [17]
    胡庆, 余松, 杨钢, 等. 鄂东襄樊−广济断裂黄州段未来地震危险性分析[J]. 科学技术与工程, 2019, 19(16): 26-32.

    HU Q, YU S, YANG G, et al. Analysis of Future Seismic risk in the Huangzhou section of the Xiangfan-Guangji fault in eastern Hubei[J]. Science Technology and Engineering, 2019, 19(16): 26-32. (in Chinese).
    [18]
    雷东宁, 蔡永建, 余松, 等. 湖北襄樊−广济断裂第四纪活动特征初步探讨[J]. 地质科技情报, 2011, 30(6): 38-43.

    LEI D N, CAI Y J, YU S, et al. Preliminary study on quaternary activity characteristics of the Xiangfan-Guangji fault in Hubei[J]. Geological Science and Technology Information, 2011, 30(6): 38-43. (in Chinese).
    [19]
    雷东宁, 蔡永建, 郑水明, 等. 麻城−团风断裂带中段新活动特征及构造变形机制研究[J]. 大地测量与地球动力学, 2012, 32(1): 21-25. DOI: 10.3969/j.issn.1671-5942.2012.01.006.

    LEI D N, CAI Y J, ZHENG S M, et al. Study on the new activity characteristics and tectonic deformation mechanism of the middle section of the Macheng-Tuanfeng fault zone[J]. Journal of Geodesy and Geodynamics, 2012, 32(1): 21-25. DOI: 10.3969/j.issn.1671-5942.2012.01.006. (in Chinese).
    [20]
    曹新菊, 虞廷林. 鄂东地区的地壳形变与现代构造活动[J]. 大地测量与地球动力学, 1981, (3): 79-85.

    CAO X J, YU T L. Crustal deformation and modern tectonic activity in eastern Hubei[J]. Journal of Geodesy and Geodynamics, 1981, (3): 79-85. (in Chinese).
    [21]
    李安然, 韩晓光. 麻城−团风断裂带现代构造应力环境的讨论[J]. 大地测量与地球动力学, 1984, (2): 68-75.

    LI A R, HAN X G. Discussion on the modern tectonic stress environment of the Macheng-Tuanfeng Fault zone[J]. Journal of Geodesy and Geodynamics, 1984, (2): 68-75. (in Chinese).
    [22]
    李细光, 曾佐勋, 刘立林. 武汉−信阳地区现今构造应力场的初步研究[J]. 西北地震学报, 2004, 26(1): 66-71.

    LI X G, ZENG Z X, LIU L L. Preliminary study on the present tectonic stress field in the Wuhan-Xinyang area[J]. Northwestern Seismological Journal, 2004, 26(1): 66-71. (in Chinese).
    [23]
    王清云, 李安然. 1932年麻城6.0级强震的蕴育环境条件探讨[J]. 大地测量与地球动力学, 1992, 12(4): 78-84.

    WANG Q Y, LI A R. Discussion on the environmental conditions for the 1932 Macheng M 6.0 strong earthquake[J]. Journal of Geodesy and Geodynamics, 1992, 12(4): 78-84. (in Chinese).
    [24]
    申重阳, 李安然. 麻城1932年6.0级地震区地球物理场与深部环境研究[J]. 地壳形变与地震, 1994, 14(3): 65-73.

    SHEN C Y, LI A R. Study on the geophysical field and deep environment of the 1932 Macheng M 6.0 earthquake area[J]. Crustal Deformation and Earthquake, 1994, 14(3): 65-73. (in Chinese).
    [25]
    谢广林, 徐孝文, 许明孝, 等. 阜阳−团风断裂带的活动性[J]. 西北地震学报, 1980, 2(3): 48-56.

    XIE G L, XU X W, XU M X, et al. Activity of the Fuyang-Tuanfeng fault zone[J]. Northwestern Seismological Journal, 1980, 2(3): 48-56. (in Chinese).
  • Cited by

    Periodical cited type(2)

    1. 耿阳,贡会源,陈鹏飞,张雷,宋超,陶涛. 术前CT引导下微创定位技术在早期肺癌治疗中的临床应用. 湘南学院学报(医学版). 2024(02): 24-26+59 .
    2. 廖庆峰,章志俊,夏贤斌,简佳庆,何成,潘冬青. 薄层CT画图导航联合快速现场评价在肺外周型病变中的诊断价值. 临床医药实践. 2024(11): 826-829 .

    Other cited types(0)

Catalog

    Article views (77) PDF downloads (12) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return