ISSN 1004-4140
CN 11-3017/P
CHEN C Z, CHEN Z Q. Research Progress in the Fusion of Trace Detection and X-ray CT Security Inspection Technologies[J]. CT Theory and Applications, xxxx, x(x): 1-15. DOI: 10.15953/j.ctta.2025.083. (in Chinese).
Citation: CHEN C Z, CHEN Z Q. Research Progress in the Fusion of Trace Detection and X-ray CT Security Inspection Technologies[J]. CT Theory and Applications, xxxx, x(x): 1-15. DOI: 10.15953/j.ctta.2025.083. (in Chinese).

Research Progress in the Fusion of Trace Detection and X-ray CT Security Inspection Technologies

More Information
  • Received Date: March 06, 2025
  • Revised Date: April 05, 2025
  • Accepted Date: April 20, 2025
  • Available Online: June 24, 2025
  • Trace detection and X-ray security inspection technology respectively serve as the “nose” and “eyes” of security applications, detecting explosives through “smell” and “vision” perspectives. Following decades of innovation and deployment, they are currently playing critical roles in the integrated aviation security solution. This study explores the prospective fusion of these two technologies for aviation security. Starting with basic technical principles and comparisons, considering security, efficiency, and passenger experience, the study examines industrial trends and discusses the bottlenecks of existing solutions based on standalone security equipment. Subsequently it elaborates the novel concept of fusing trace detection and X-ray computed tomography (CT) in security inspection. According to qualitative analysis and discrete event simulation, the study predicts the effectiveness of such fusion. The study further discusses the challenges faced in the development of an automatic trace detection system, elaborates on its concrete innovations and different methods of fusion, and envisions the trends of fusing multiple security detection technologies. According to industry reality, this study analyzes the domestic and international application prospects of this technology in aviation security from a rational and optimistic perspective, aiming to visualize a blueprint for technology developers and end users of security equipment.

  • [1]
    陈志强, 张丽, 金鑫. X射线安全检查技术研究新进展[J]. 科学通报, 2017, 62(13): 1350-1365. DOI: 10.1360/N972017-00033.

    CHEN Z Q, ZHANG L, JIN X. Recent progress on X-ray security inspection technologies[J]. Chinese Science Bulletin, 2017, 62(13): 1350-1365. DOI: 10.1360/N972017-00033.
    [2]
    KAGAN A, OXLEY J C. Counterterrorist Detection Techniques of Explosives[M]. 2nd ed. Elsevier B. V. , 2022: XV.
    [3]
    US Congress. S. 1447 - 107th congress (2001-2002): aviation and transportation security Act[DB/OL]. (2001-11-19)[2025-01-01]. https://www.congress.gov/bill/107th-congress/senate-bill/1447.
    [4]
    吴万龙, 李元景, 桑斌, 何文俊, 李玉兰. CT技术在安检领域的应用[J]. CT理论与应用研究, 2005(1): 24-32. DOI: 10.3969/j.issn.1004-4140.2005.01.005.

    WU W L, LI Y J, SANG B, et al. Application of computed tomography in explosives detection[J]. CT Theory and Applications, 2005(1): 24-32. DOI: 10.3969/j.issn.1004-4140.2005.01.005.
    [5]
    ECAC Common Evaluation Process (CEP) of security equipment. Frequently asked questions (FAQs) about the ECAC common evaluation process of security equipment [EB/OL]. [2025-01-01]. https://www.ecac-ceac.org/activities/security/common-evaluation-process-cep-of-security-equipment.
    [6]
    金鑫, 张思远, 李亮, 等. 一种基于双平面扫描方式的双能静态CT系统[J]. CT理论与应用研究, 2020, 29(1): 31-37. DOI: 10.15953/j.1004-4140.2020.29.01.04.

    JIN X, ZHANG S Y, LI L, et al. A dual-energy static CT system based on dual-plane scanning method[J]. CT Theory and Applications, 2020, 29(1): 31-37. DOI: 10.15953/j.1004-4140.2020.29.01.04.
    [7]
    王新, 李明涛, 杨宝璐, 等. X射线衍射在安检技术领域的研究进展[J]. 物理实验, 2020, 40(10): 6-16. DOI: 10.19655/j.cnki.1005-4642.2020.10.001.

    WANG X, LI M T, YANG B L, et al. Research progress of X-ray diffraction in the field of security inspection[J]. Physics Experimentation, 2020, 40(10): 6-16. DOI: 10.19655/j.cnki.1005-4642.2020.10.001.
    [8]
    郝佳, 张丽, 陈志强, 等. 多能谱X射线成像技术及其在CT中的应用[J]. CT理论与应用研究, 2011, 20(1): 141-150. DOI: 10.15953/j.1004-4140.2011.01.018.

    HAO J, ZHANG L, CHEN Z Q, et al. Multi-energy X-ray imaging technology and its application in CT[J]. CT Theory and Applications, 2011, 20(1): 141-150. DOI: 10.15953/j.1004-4140.2011.01.018.
    [9]
    EICEMAN G A. Ion Mobility Spectrometry[M]. 3rd ed. Taylor & Francis Group, 2014.
    [10]
    EICEMAN E A. Toward the chemical agent monitor: technologies and developments in England and the United States from 1965 to 1982[J]. International Journal for Ion Mobility Spectrometry, 2020, 23(1): 39-49. DOI: 10.1007/s12127-019-00256-w.
    [11]
    KAGAN A, OXLEY J C. Counterterrorist Detection Techniques of Explosives[M]. 2nd ed. Elsevier B. V. , 2022: 3.
    [12]
    LI L F, ZHANG T Y, GE W, et al. Detection of trace explosives using a novel sample introduction and ionization method[J]. Molecules, 2022, 27(14). DOI: 10.3390/MOLECULES27144551.
    [13]
    ECAC Common Evaluation Process (CEP) of security equipment. Explosive Trace Detection (ETD) equipment[EB/OL]. [2025-01-01]. https://ecac-ceac.org/activities/security/common-evaluation-process-cep-of-security-equipment.
    [14]
    Airports Council International (ACI). Smart Security guidance document: alternative methods for passenger and cabin baggage screening[EB/OL]. [2025-01-01]. https://aci.aero/airport-advocacy/security/smart-security.
    [15]
    RUSSELL W. TSA should ensure screening technologies continue to meet detection requirements after deployment[R]. United States Government Accountability Office, 2019.
    [16]
    KADA J, DECKER K. Explosives trace detectors (ETDs): market survey report, November 2021[R]. National Urban Security Technology Laboratory (NUSTL), 2021.
    [17]
    ZAMORA D, AMO-GONZALEZ M, LANZA M, et al. Reaching a vapor sensitivity of 0.01 parts per quadrillion in the screening of large volume freight[J]. Analytical Chemistry, 2018, 90(4). DOI: 10.1021/acs.analchem.7b00795.
    [18]
    HASHIMOTO Y. Development of a miniature mass spectrometer and an automated detector for sampling explosive materials[J]. Mass Spectrometry, 2017, 6(1): A0054-A0054. DOI: 10.5702/massspectrometry.A0054.
    [19]
    AHRENS A, MÖHLE J, HITZEMANN M, et al. Novel ion drift tube for high-performance ion mobility spectrometers based on a composite material[J]. International Journal for Ion Mobility Spectrometry, 2020, 23(2): 1-7. DOI: 10.1007/s12127-020-00265-0.
    [20]
    CRAWFORD C L, HILL H H. Evaluation of false positive responses by mass spectrometry and ion mobility spectrometry for the detection of trace explosives in complex samples[J]. Analytica Chimica Acta, 2013, 795: 36-43. DOI: 10.1016/j.aca.2013.07.070.
    [21]
    BIELECKI Z, JANUCKI J, KAWALEC A, et al. Sensors and systems for the detection of explosive devices - an overview[J]. Metrology and Measurement Systems, 2012, 19(1): 3-28. DOI: 10.2478/v10178-012-0001-3.
    [22]
    HUEGLI D, MERKS S, SCHWANINGER A. Automation reliability, human-machine system performance, and operator compliance: A study with airport security screeners supported by automated explosives detection systems for cabin baggage screening[J]. Applied Ergonomics, 2020, 86: 103094. DOI: 10.1016/j.apergo.2020.103094.
    [23]
    POST J M. Military studies in the jihad against the tyrants: the Al-Qaeda training manual[R]. US Air Force Counterproliferation Center, 2004.
    [24]
    National Academies of Sciences, Engineering, and Medicine. Reducing the threat of improvised explosive device attacks by restricting access to explosive precursor chemicals[M]. Washington, DC: The National Academies Press, 2018. DOI: 10.17226/24862.
    [25]
    The Brussels attacks-22/03/2016 what do we know? & insights from ICT experts[R]. International Institute for Counter Terrorism (ICT), 2016.
    [26]
    International Civil Aviation Organization. Presentation of 2019 air transport statistical results[EB/OL]. [2025-01-01]. https://www.icao.int/annual-report-2019/Pages/the-world-of-air-transport-in-2019-statistical-results.aspx.
    [27]
    中国民用航空局. 2019年民航行业发展统计公报[EB/OL]. (2020-06-05)[2025-01-01]. https://www.caac.gov.cn/XXGK/XXGK/TJSJ/202006/P020200605630677965649.pdf.

    Civil Aviation Administration of China. 2019 Civil aviation industry statistics[EB/OL] (2020-06-05)[2025-01-01]. https://www.caac.gov.cn/XXGK/XXGK/TJSJ/202006/P020200605630677965649.pdf. (in Chinese).
    [28]
    Airports Council International (ACI). Smart Security guidance document: checkpoint design and automation[EB/OL]. [2025-01-01]. https://aci.aero/airport-advocacy/security/smart-security.
    [29]
    European Commission. Commission implementing regulation (EU) 2015/1998 of 5 November 2015 laying down detailed measures for the implementation of the common basic standards on aviation security[S]. Official Journal of the European Union, 2015.
    [30]
    HÄTTENSCHWILER N, MICHEL S, KUHN M, et al. A first exploratory study on the relevance of everyday object knowledge and training for increasing efficiency in airport security X-ray screening[C]//2015 International Carnahan Conference on Security Technology (ICCST). IEEE, 2015: 25-30. DOI: 10.1109/CCST.2015.7389652.
    [31]
    BUSER D, STERCHI Y, SCHWANINGER A. Why stop after 20 minutes? Breaks and target prevalence in a 60-minute X-ray baggage screening task[J]. International Journal of Industrial Ergonomics, 2020, 76: 102897. DOI: 10.1016/j.ergon.2019.102897.
    [32]
    HOROWITZ T S. Prevalence in visual search: from the clinic to the lab and back again[J]. Japanese Psychological Research, 2017, 59(2): 65-108. DOI: 10.1111/jpr.12153.
    [33]
    WOLFE J M, HOROWITZ T S, VAN WERT M J, et al. Low target prevalence is a stubborn source of errors in visual search tasks[J]. Journal of Experimental Psychology: General, 2007, 136(4): 623-638. DOI: 10.1037/0096-3445.136.4.623.
    [34]
    Department for Transport and Civil Aviation Authority. Air passenger experience of security screening: 2019 [EB/OL]. (2020-10-28)[2025-01-01]. https://www.gov.uk/government/statistics/air-passenger-experience-of-security-screening-2019.
    [35]
    林薇薇. 中国民航安检发展进程及转变[J]. 民航管理, 2021(1): 67-69.

    LIN W W. Development process and transformation of China civil aviation security inspection[J]. Civil Aviation Management, 2021(1): 67-69. (in Chinese).
    [36]
    KRAMER E, DEMPERS R, PAULSHUS J. Open architecture for airport security systems[R]. ACI Europe, 2020.
    [37]
    全国安全防范报警系统标准化技术委员会. X射线计算机断层成像安全检查系统技术要求: GB/T 37128-2018[S]. 北京: 中国标准出版社, 2018.

    Security Protection Alarm Systems. Technical requirements for X-ray computed tomography security inspection systems: GB/T 37128-2018[S]. Beijing: Standards Press of China, 2018. (in Chinese).
    [38]
    HÄTTENSCHWILER N, STERCHI Y, MENDES M, et al. Automation in airport security X-ray screening of cabin baggage: examining benefits and possible implementations of automated explosives detection[J]. Applied Ergonomics, 2018, 72: 58-68. DOI: 10.1016/j.apergo.2018.05.003.
    [39]
    WELLS K, BRADLEY D A. A review of X-ray explosives detection techniques for checked baggage[J]. Applied Radiation and Isotopes, 2012, 70(8): 1729-1746. DOI: 10.1016/j.apradiso.2012.01.011.
    [40]
    KOZOLE J, TOMLINSON P J, STAIRS R J, et al. Characterizing the gas phase ion chemistry of an ion trap mobility spectrometry based explosive trace detector using a tandem mass spectrometer[J]. Talanta, 2012, 99: 799-810. DOI: 10.1016/j.talanta.2012.07.030.
    [41]
    BROWNE C A, FORBES T P, SISCO E. Detection and identification of sugar alcohol sweeteners by ion mobility spectrometry[J]. Analytical Methods, 2016, 8(28): 5611-5618. DOI: 10.1039/C6AY01554A.
    [42]
    National Library of Medicine, National Center for Biotechnology Information. PubChem[EB/OL]. [2025-01-01]. https://pubchem.ncbi.nlm.nih.gov/.
    [43]
    邱日祥, 李纬, 张少娜. GA/T 841-2021《基于离子迁移谱技术的痕量毒品/炸药探测仪通用技术要求》标准解读[J]. 警察技术, 2021(6): 61-68. DOI: 10.3969/j.issn.1009-9875.2021.06.015.

    QIU R X, LI W, ZHANG S N. Interpretation the standard “general technical requirements for trace narcotics/explosives detectors based on ion mobility spectrometry technology (GA/T 841-2021) ”[J]. Police Technology, 2021(6): 61-68. DOI: 10.3969/j.issn.1009-9875.2021.06.015.
    [44]
    RUIZ E, CHEU R L. Simulation model to support security screening checkpoint operations in airport terminals[J]. Transportation Research Record, 2020, 2674(2): 45-56. DOI: 10.1177/0361198120903242.
    [45]
    EWING R G, WALTMAN M J, ATKINSON D A, et al. The vapor pressures of explosives[J]. Trends in Analytical Chemistry, 2013, 42: 35-48. DOI: 10.1016/j.trac.2012.09.010.
    [46]
    Airports Council International (ACI). Smart Security guidance document: cabin baggage screening [EB/OL]. [2025-01-01]. https://aci.aero/airport-advocacy/security/smart-security.
    [47]
    ALKHEDER S, ALOMAIR A, ALADWANI B. Hold baggage security screening system in Kuwait International Airport using Arena software[J]. Ain Shams Engineering Journal, 2020, 11(3): 687-696. DOI: 10.1016/j.asej.2019.10.016.
    [48]
    Fricano L, Goledzinowski M, Jackson R, et al. An automatic trace detection system for the detection of explosives' vapours and particles in luggage[J]. 2001.
    [49]
    EWING R G, ATKINSON D A, CLOWERS B H. Direct real-time detection of RDX vapors under ambient conditions[J]. Analytical Chemistry, 2013, 85(1): 389-397. DOI: 10.1021/ac302828g.
    [50]
    BRINK M V D. Project final report: accelerated checkpoint design integration test and evaluation (XP-DITE)[R]. CORDIS European Commission, 2017.
    [51]
    MORA F D L. Fast carry-on luggage screening method for explosive detection[R]. Spectrometry for Security Applications (First International Workshop), Dornbirn, Austria, 2019.
    [52]
    CHEN C Z, BAO Y T, XIAO Y. Exploring automatic IMS and its fusion with X-ray CT in security screening[R]. 32nd ISIMS Conference Book of Abstracts, 2023.
    [53]
    HÄTTENSCHWILER N, MERKS S, SCHWANINGER A. Airport security X-ray screening of hold baggage: 2D versus 3D imaging and evaluation of an on-screen alarm resolution protocol[C]//2018 International Carnahan Conference on Security Technology. IEEE, 2018. DOI: 10.1109/CCST.2018.8585713.
    [54]
    Airports Council International (ACI). Smart Security guidance document: advanced cabin baggage screening, computed tomography (CT) [EB/OL]. [2025-01-01]. https://aci.aero/airport-advocacy/security/smart-security
    [55]
    朱涛涛, 王立军. 基于CT安检技术的机场智能旅检通道新探索[J]. CT理论与应用研究, 2020, 2020, 29(04): 447-455. DOI: 10.15953/j.1004-4140.2020.29.04.07.

    ZHU T T, WANG L J. New exploration of airport intelligent passenger inspection channel based on ct security screening technology[J]. CT Theory and Applications, 2020, 2020, 29(04): 447-455. DOI: 10.15953/j.1004-4140.2020.29.04.07.
    [56]
    European Commission. Commission implementing regulation (EU) 2023/566 of 10 March 2023 amending implementing regulation (EU) 2015/1998 as regards certain detailed measures for the implementation of the common basic standards on aviation security[S]. Official Journal of the European Union, 2023.
    [57]
    MOUTON A, BRECKON T P. A review of automated image understanding within 3D baggage computed tomography security screening[J]. Journal of X-ray Science and Technology, 2015, 23(5): 531-55. DOI: 10.3233/XST-150508.
    [58]
    AKCAY S, KUNDEGORSKI M E, Willcocks C G, et al. Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery[J]. IEEE Transactions on Information Forensics and Security, 2018: 2203-2215. DOI: 10.1109/TIFS.2018.2812196.
    [59]
    Buser D, Merks S. Centralised image processing: challenges, trends and time on task[J]. Aviation security international: The global journal of airport & airline security, 2020, 26(6): 33-35.
    [60]
    DAVID H, SARAH M, ADRIAN S. Benefits of decision support systems in relation to task difficulty in airport security X-ray screening[J]. International Journal of Human–Computer Interaction, 2023, 39(19): 3830-3845. DOI: 10.1080/10447318.2022.2107775.
    [61]
    赵振武, 唐玉丽, 麻建军. 基于旅客分类的机场安检系统研究[J]. 综合运输, 2017, 39(03): 37-41. DOI: CNKI:SUN:YSZH.0.2017-03-009.

    ZHAO Z W, TANG Y L, MA J J. Study on airport security system based on passenger classification[J]. China Transportation Review, 2017, 39(03): 37-41. DOI: CNKI:SUN:YSZH.0.2017-03-009.(in Chinese).
    [62]
    李杰, 金华, 徐汇川. 国内民航机场的分类安检研究[J]. 辽宁警察学院学报, 2017, 19(05): 35-41. DOI: 10.3969/j.issn.1008-5378.2017.05.007.

    LI J, JIN H, XU H C. Study on classified security in domestic civil aviation airport[J]. Journal of Liaoning Police College, 2017, 19(05): 35-41. DOI: 10.3969/j.issn.1008-5378.2017.05.007. (in Chinese).
    [63]
    陈晓红, 徐敏婕, 陈武华. 考虑成本, 等待时间和安全水平的分类安检模式研究[J]. 运筹与管理, 2021, 30(7): 9. DOI: 10.12005/orms.2021.0211.

    CHEN X H, XU M J, CHEN W H. Research on classified security inspection mode considering cost, waiting time and security level[J]. Operations Research and Management Science, 2021, 30(7): 9. DOI: 10.12005/orms.2021.0211.
  • Related Articles

    [1]SUN Yunda, WEI Yunchao, ZHANG Li. Research Progress in Target Recognition Methods for Security Computed Tomography Images[J]. CT Theory and Applications, 2024, 33(2): 263-271. DOI: 10.15953/j.ctta.2023.152
    [2]HUANG Qingping, JIN Xin, XU Xiaofei, ZHU Guoxi, ZHANG Li. Research Progress of X-ray Diffraction Technology in Security Inspection[J]. CT Theory and Applications, 2023, 32(6): 843-856. DOI: 10.15953/j.ctta.2023.158
    [3]ZHU Taotao, WANG Lijun. New Exploration of Airport Intelligent Passenger Inspection Channel Based on CT Security Screening Technology[J]. CT Theory and Applications, 2020, 29(4): 447-455. DOI: 10.15953/j.1004-4140.2020.29.04.07
    [4]LI Bo, DING Hou-ben. The Complex Type Micro-dose X-ray Channel Security Inspection System[J]. CT Theory and Applications, 2014, 23(2): 363-367.
    [5]LI Bo, DING Hou-ben. Liquid Security Checker Based on Technique of Compton Backscatter Scanning[J]. CT Theory and Applications, 2014, 23(2): 357-362.
    [6]YANG Xiao-gang, YANG Li-rui. A Method on X-ray Security Image Enhancement[J]. CT Theory and Applications, 2012, 21(4): 705-712.
    [7]ZHAO Yue, CHEN Xi, NIU Yi-jie. The Research on Test and Evaluation of CT Security Inspection Equipment for Civil Aviation[J]. CT Theory and Applications, 2012, 21(3): 449-456.
    [8]SHEN Jian-hua, SHAO Li-kang, DING Hou-ben, WANG Hua, XU Xiao-ming, XU Ming-zhong. Design and Implementation of Control System of the γ-Ray Security Inspection Device[J]. CT Theory and Applications, 2004, 13(2): 21-23.
    [9]WANG Qi, CHEN Zhi-qiang, WU Xiao-ping, WANG Xue-wu, ZHANG Li, KANG Ke-jun. Review of X-ray Security Inspection Technology[J]. CT Theory and Applications, 2004, 13(1): 32-37.
    [10]HAN Yu-sheng, YI Su-jun, SHAO Li-kang, DING Hou-ben, LI Peng-hui, NIE Chao, QIN Xiao-yan. Algorithm of Real-time Image Correction for Multi-speed Security Verification System[J]. CT Theory and Applications, 2003, 12(4): 5-9.

Catalog

    Article views (143) PDF downloads (20) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return