ISSN 1004-4140
CN 11-3017/P
ZHANG Y X, LIU D D. Combined Application of Bismuth Shielding and Organ Dose-Modulation Techniques in Lung CT Scanning[J]. CT Theory and Applications, xxxx, x(x): 1-6. DOI: 10.15953/j.ctta.2025.092. (in Chinese).
Citation: ZHANG Y X, LIU D D. Combined Application of Bismuth Shielding and Organ Dose-Modulation Techniques in Lung CT Scanning[J]. CT Theory and Applications, xxxx, x(x): 1-6. DOI: 10.15953/j.ctta.2025.092. (in Chinese).

Combined Application of Bismuth Shielding and Organ Dose-Modulation Techniques in Lung CT Scanning

More Information
  • Received Date: March 12, 2025
  • Revised Date: April 14, 2025
  • Accepted Date: April 15, 2025
  • Available Online: April 28, 2025
  • Objective: To investigate the efficacy of the combined application of bismuth shielding and organ dose-modulation (ODM) techniques in reducing doses to superficial radiosensitive organs and its effect on image quality during lung computed tomography (CT) scanning. Methods: Based on a clinical lung CT scanning protocol, four scanning groups are created on a chest phantom: Group 1, without bismuth shielding and ODM; Group 2, with ODM only; Group 3, with bismuth shielding only; and Group 4, with both bismuth shielding and ODM. Skin doses in the thyroid and breast regions are measured, and the volume CT dose index (CTDIvol) is recorded. Coronal images measuring 5 mm thick are reformed, and the contrast noise ratio (CNR) and figure of merit are calculated. The image quality is evaluated subjectively. The subjective scores and CNR are analyzed for different ODM methods and to determine whether bismuth shielding two-factor ANOVA is required. Results: Compared with the case of Group 1, the CTDIvol of Groups 2~4 decrease by 8.2%, −0.06%, and 8.8%, respectively; the thyroid doses decrease by 17.9%, 44.7%, and 47.3%, respectively; and the breast doses decrease by 12.43%, 31.8%, and 41.1%, respectively. Although the CNR of the images decreases slightly after bismuth shielding and ODM are performed, the differences are insignificant. Group 1 indicates the highest subjective score while Group 4 indicates the lowest, with no statistical difference between the groups. Conclusion: The combined application of bismuth shielding and ODM techniques can significantly reduce radiation doses during lung CT scanning while ensuring image quality.

  • [1]
    杨政君, 张昂, 陈勇, 等. 辐射剂量和管电压对CT图像质量的影响: 基于任务的图像质量评价[J]. CT理论与应用研究, 2022, 31(2): 211-217. DOI: 10.15953/j.ctta.2021.060.

    YANG Z J, ZHANG A, CHEN Y, et al. The effect of radiation dose and tube potential on image quality of CT: A task-based image quality assessment[J]. CT Theory and Applications, 2022, 31(2): 211-217. DOI: 10.15953/j.ctta.2021.060.
    [2]
    倪晓龙, 周凤云, 施政, 等. 基于剂量模拟人的腹部CT扫描辐射剂量分布研究[J]. CT理论与应用研究(中英文), 2024, 33(6): 808-814. DOI: 10.15953/j.ctta.2024.087.

    NI X L, ZHOU F Y, SHI Z, et al. Study on the radiation dose distribution of abdominal CT scans based on dose simulation humans[J]. CT Theory and Applications, 2024, 33(6): 808-814. DOI: 10.15953/j.ctta.2024.087.
    [3]
    CHRISTNERJ A, GRANT K L, MCCOLLOUGH C H, et al. 采用铋屏蔽、基于器官的管电流调制、管电流减少方法减少头颅CT扫描时的眼部剂量[J]. 国际医学放射学杂志, 2012, 35(2): 170.

    CHRISTNER J A, GRANT K L, MCCOLLOUGH C H, et al. Reducing CT radiation dose to the eye: Comparison of bismuth shielding, organ-based tube current modulation, and reduced tube current techniques[J]. International Journal of Medical Radiology. 2012, 35(2): 170. (in Chinese).
    [4]
    孙静坤, 彭刚, 吕发金, 等. 铋屏蔽联合器官管电流调制技术在颅脑CT检查中应用的体模研究[J]. 中华放射医学与防护杂志, 2021, 41(5): 385-389. DOI: 10.3760/cma.j.issn.0254-5098.2021.05.012.

    SUN J K, PENG G, LYU F J, et al. Phantom study of bismuth shielding combined with organ-based tube current modulation in cranial CT examination[J]. Chinese Journal of Radiological Medicine and Protection, 2021, 41(5): 385-389. DOI: 10.3760/cma.j.issn.0254-5098.2021.05.012.
    [5]
    KIM S, FRESH D P, YOSHIZUMI T T. Bismuth shielding in CT: Support for use in children[J]. Pediatric Radiology, 2010, 40(11): 1739-1743. DOI: 10.1007/s00247-010-1807-3.
    [6]
    Bosch de Basea Gomez M, Thierry-Chef I, Harbron R, et al. Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults[J]. Nature Medicine. 2023;29(12): 3111-3119. DOI: 10.1038/s41591-023-02620-0.
    [7]
    REDMAYNE M, JOHANSSON O. Radiofrequency exposure in young and old: Different sensitivities in light of age-relevant natural differences[J]. Reviews on Environmental Health, 2015, 30(4): 323-335. DOI: 10.1515/reveh-2015-0030.
    [8]
    张永县, 牛延涛, 张丽丽, 等. 器官剂量调制技术在胸部CT中降低乳腺辐射剂量的研究[J]. 中华放射学杂志, 2020, 54(6): 587-591. DOI: 10.3760/cma.j.cn112149-20190708-00262.

    ZHANG Y X, NIU Y T, ZHANG L L, et al. Study on organ dose modulation technique for reducing breast radiation dose in chest CT[J]. Chinese Journal of Radiology, 2020, 54(6): 587-591. DOI: 10.3760/cma.j.cn112149-20190708-00262.
    [9]
    王明月, 董军强, 高剑波, 等. 器官剂量调制技术在女性胸部CT成像中对乳腺的保护作用[J]. 中华放射医学与防护杂志, 2016, 36(7): 530-533. DOI: 10.3760/cma.j.issn.0254-5098.2016.07.011.

    WANG M Y, DONG J Q, GAO J B, et al. Protective effect of organ dose modulation technique on breast in female chest CT imaging[J]. Chinese Journal of Radiological Medicine and Protection, 2016, 36(7): 530-533. DOI: 10.3760/cma.j.issn.0254-5098.2016.07.011.
    [10]
    LIAO Y L, LAI N K, TYAN Y S, et al. Bismuth shield affecting CT image quality and radiation dose in adjacent and distant zones relative to shielding surface: A phantom study[J]. Biomedical Journal, 2019, 42(5): 343-351. DOI: 10.1016/j.bj.2019.04.004.
    [11]
    KARIM M, RAHIM NA, MATSUBARA K, et al. The effectiveness of bismuth breast shielding with protocol optimization in CT thorax examination[J]. Journal of X-Ray Science and Technology, 2019, 27(1): 139-147. DOI: 10.3233/XST-180397.
    [12]
    李贝贝, 张子敬, 赵明月, 等. 个体化低辐射剂量胸部增强CT成像的模体与临床研究[J]. 中华放射医学与防护杂志, 2022, 42(12): 992-998. DOI: 10.3760/cma.j.cn112271-20220803-00315.

    LI B B, ZHANG Z J, ZHAO M Y, et al. Personalized low-radiation-dose chest contrast-enhanced CT imaging: A phantom and clinical study. Chinese Journal of Radiological Medicine and Protection. 2022;42(12): 992-998. DOI: 10.3760/cma.j.cn112271-20220803-00315. (in Chinese).
    [13]
    WANG J, DUAN X H, CHRISTNER J A, et al. Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT[J]. Radiology. 2012, 262(1): 191-198. DOI: 10.1148/radiol.11110470.
    [14]
    牛延涛, 宋尧尧, 张永县, 等. 铋屏蔽对头颈部多层螺旋CT中眼晶状体辐射剂量的降低作用[J]. 中华放射医学与防护, 2015, 35(2): 149-152.

    NIU Y T, SONG Y Y, ZHANG Y X, et al. Dose reduction to eye lens in head and neck multi-slice spiral CT using bismuth shielding[J]. Chinese Journal of Radiological Medicine and Protection. 2015, 35(2): 149-152.
    [15]
    KALRA M K, NAZ N, RIZZO S M, et al. Computed tomography radiation dose optimization scanning protocols and clinical applications of automatic exposure control[J]. Current Problems in Diagnostic Radiology, 2005, 34: 171-181. DOI: 10.1067/j.cpradiol.2005.06.002.
  • Related Articles

    [1]HU Yanjun, WEI Xuan, ZHANG Yu, TIAN Xin, WANG Likun, JIANG Guilian, NIU Yantao. Effect of External Foreign Bodies on Patient Radiation Dose in Chest CT[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.103
    [2]REN Yue, ZHANG Yongxian, LIU Dandan, MA Wentao, GUO Senlin. Application of Bismuth Shielding and Organ Dose Modulation Techniques in Brain CT Scanning with Different Scanning Baselines[J]. CT Theory and Applications, 2025, 34(3): 345-350. DOI: 10.15953/j.ctta.2024.318
    [3]ZHANG Bin, KUI Xueyan, LIAO Jianyong, WANG Xu, NIE Wenhuan, FENG Hongjie, MA Yanli, WANG Wenwu, ZHANG Yongxian. Investigation and Analysis of Radiation Dose in Adult Head and Chest CT Examinations at Primary Healthcare Institutions in a Suburban District of Beijing[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.351
    [4]WANG Chensi, HONG Yao, FANG Huimin, DING Xuelu, YANG Yifan, TIAN Xiangbao, CHEN Wenjing, WANG Yongsheng. Based on the Effect of Different Pitches on Neck CTA Radiation Dose and Image Quality under Automatic Tube Current Modulation Technology[J]. CT Theory and Applications, 2024, 33(3): 309-315. DOI: 10.15953/j.ctta.2023.148
    [5]YANG Zhengjun, ZHANG Ang, CHEN Yong, JIANG Jiang, WANG Lingyun, ZHANG Yong, ZHANG Xuan, QI Xiaofeng. The Effect of Radiation Dose and Tube Potential on Image Quality of CT: A Task-based Image Quality Assessment[J]. CT Theory and Applications, 2022, 31(2): 211-217. DOI: 10.15953/j.ctta.2021.060
    [6]LIU Wangyang, SUN Cunjie, ZHAO Honglan, WANG Xiuling. Study on Evaluation Method of Radiation Dose of Patients in TACE of IVR-CT[J]. CT Theory and Applications, 2019, 28(6): 653-658. DOI: 10.15953/j.1004-4140.2019.28.06.02
    [7]WU De-hong, CHEN Shao-bo, FU Chuan-ming, XU Lin, CHEN Lun-gang, YU Guang-ju. Value of Automatic Tube Current Modulation Techniques to Reducing the Radiation Dose in CTU[J]. CT Theory and Applications, 2015, 24(2): 319-325. DOI: 10.15953/j.1004-4140.2015.24.02.18
    [8]FU Chuan-ming, WU De-hong, XU Lin, CHEN Lun-gang, WANG Zhong-ping, XIONG Yin. Reduce the Radiation Dose in the Lower Extremities to Explore the Feasibility of CTA[J]. CT Theory and Applications, 2014, 23(3): 467-473.
    [9]FANG Lin, LI Liang. Application Progress of Adaptive Statistical Iterative Reconstruction in Reducing Radiation Dose[J]. CT Theory and Applications, 2013, 22(2): 207-213.
    [10]ZHANG Hai-bo, FU Chuan-ming, CHEN Lun-gang, XU Lin, WANG Kai-hua. Pitch Optimizing Combination of Thoracic and Abdominal CTA Image Quality and Radiation Dose Discussion[J]. CT Theory and Applications, 2012, 21(2): 305-311.

Catalog

    Article views (73) PDF downloads (79) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return