ISSN 1004-4140
CN 11-3017/P
ZHANG R, ZHANG H, HE H J, et al. Eight Directional Acoustic Logging Remote Detection Reflection Wave Imaging Technology: A Collaborative Imaging Framework Combining Shear Wave Transformation and Kirchhoff Migration[J]. CT Theory and Applications, xxxx, x(x): 1-9. DOI: 10.15953/j.ctta.2025.128. (in Chinese).
Citation: ZHANG R, ZHANG H, HE H J, et al. Eight Directional Acoustic Logging Remote Detection Reflection Wave Imaging Technology: A Collaborative Imaging Framework Combining Shear Wave Transformation and Kirchhoff Migration[J]. CT Theory and Applications, xxxx, x(x): 1-9. DOI: 10.15953/j.ctta.2025.128. (in Chinese).

Eight Directional Acoustic Logging Remote Detection Reflection Wave Imaging Technology: A Collaborative Imaging Framework Combining Shear Wave Transformation and Kirchhoff Migration

More Information
  • Received Date: April 09, 2025
  • Revised Date: May 13, 2025
  • Accepted Date: May 26, 2025
  • Available Online: June 08, 2025
  • As fine-scale exploration of unconventional oil and gas reservoirs advances, the need for high-resolution imaging of complex structures, such as fractures and cavities, near boreholes has become increasingly critical. To address the limited resolution of conventional acoustic logging tools, this paper presents a collaborative imaging method based on shear wave transformation and Kirchhoff integral migration. The approach is tailored for complex reservoirs and leverages a newly developed eight-directional acoustic logging instrument. The proposed method features multi-scale sparse representation capabilities, enabling effective extraction of weak reflected wave signals within the borehole environment and accurate imaging and localization of reflected wave energy. Its ability to identify karst cave systems and double-inclined interfaces has been validated through both theoretical simulations and real well data analysis. Results demonstrate that the method enhances the accuracy of reflected wave identification and improves the resolution of structural imaging. These findings offer technical support for the application of eight-directional logging instruments in geologically complex reservoir settings.

  • [1]
    张银涛, 林承焰, 罗枭, 等. 深层缝洞体地震特征提取与能量脊线追踪[J]. 石油地球物理勘探, 2024, 59(5): 1132-1140. DOI: 10.13810/j.cnki.issn.1000-7210.2024.05.017.

    ZHANG Y T, LIN C Y, LUO X, et al. Method for extracting seismic features and tracing energy ridges in deep fractured-vuggy reservoirs[J]. Oil Geophysical Prospecting, 2024, 59(5): 1132-1140. DOI: 10.13810/j.cnki.issn.1000-7210.2024.05.017.
    [2]
    李宇航, 张宏, 张军华, 等. 油页岩勘探开发现状及进展[J]. CT理论与应用研究, 2014, 23(6): 1051-1063.

    LI Y H, ZHANG H, ZHANG J H, et al. The present situation and progress of oil shale exploration and exploitation[J]. CT Theory and Applications, 2014, 23(6): 1051-1063. (in Chinese).
    [3]
    张恒荣, 肖立志, 曾少军, 等. 基于裂缝柔度和地应力模型的声电测井正、反演方法及应用[J]. 石油地球物理勘探, 2023, 58(2): 431-442. DOI: 10.13810/j.cnki.issn.1000-7210.2023.02.020.

    ZHANG H R, XIAO L Z, ZENG S J, et al. Forward and inversion methods and application of acoustoelectric logging based on fracture compliance and crustal stress model[J]. Oil Geophysical Prospecting, 2023, 58(2): 431-442. DOI: 10.13810/j.cnki.issn.1000-7210.2023.02.020.
    [4]
    罗辉, 沈金松, 张文学, 等. 裂缝性储层阵列声波成像测井响应模拟及速度频散特征研究[J]. CT理论与应用研究(中英文), 2024, 33(6): 747-760. DOI: 10.15953/j.ctta.2024.107.

    LUO H, SHEN J S, ZHANG W X, et al. Study on the numerical simulation of array sonic logging responses and their velocity dispersion characteristics in fractured formation[J]. CT Theory and Applications, 2024, 33(6): 747-760. DOI: 10.15953/j.ctta.2024.107.
    [5]
    李超, 岳文正, 金行林, 等. 声反射成像测井数据处理研究进展[J]. 测井技术, 2013, 37(1): 13-20. DOI: 10.16489/j.issn.1004-1338.2013.01.003.

    LI C, YUE W Z, JIN X L, et al. Progresses of Data processing methods for acoustic reflection lmaging logging[J]. Well Logging Technology, 2013, 37(1): 13-20. DOI: 10.16489/j.issn.1004-1338.2013.01.003. (in Chinese).
    [6]
    张承森, 肖承文, 刘兴礼, 等. 远探测声波测井在缝洞型碳酸盐岩储集层评价中的应用[J]. 新疆石油地质, 2011, 32(3): 325-328.

    ZHANG C S, XIAO C W, LIU X L, et al. Application of Remote Detection Acoustic Reflection Logging to Fractured-Vuggy Carbonate Reservoir Evaluation[J]. Xinjiang Petroleum Geology, 2011, 32(3): 325-328. (in Chinese).
    [7]
    HORNBY B E. Imaging of near-borehole structure using full-waveform sonic data[J]. Geophysics, 1989, 54(6): 747-757. DOI: 10.1190/1.1442702.
    [8]
    王兵, 陶果, 王华, 等. 阵列声波测井中反射纵波和横波信号提取方法[J]. 中国石油大学学报(自然科学版), 2011, 35(2): 57-63. DOI: 10.3969/j.issn.1673-5005.2011.02.010.

    WANG B, TAO G, WANG H, et al. Extraction method of P and S reflection waves from array acoustic logging data[J]. Journal of China University of Petroleum, 2011, 35(2): 57-63. DOI: 10.3969/j.issn.1673-5005.2011.02.010.
    [9]
    张恒. 偶极远探测反射波提取及成像方法研究[D]. 北京: 中国石油大学(北京), 2021.

    ZHANG H. The study of reflection extraction and imaging methods of dipole array acoustic logging[D]. Beijing: China University of Petroleum (Beijing), 2021. (in Chinese).
    [10]
    杨晓东, 秦宁, 王延光. 常用叠前深度偏移方法特点分析与实例对比[J]. 地球物理学进展, 2015, 30(2): 740-745. DOI: 10.6038/pg20150235.

    YANG X D, QING N, WANG Y G. Analysis and examples of commonly used prestack depth migration methods[J]. Progress in Geophysics, 2015, 30(2): 740-745. DOI: 10.6038/pg20150235. (in Chinese).
    [11]
    TANG X M, PATTERSON D J. Single-well S-wave imaging using multicomponent dipole acoustic-log data[J]. Geophysics, 2009, 74(6): WCA211-WCA223. DOI: 10.1190/1.3227150.
    [12]
    CHEN J, YUE W, LI C, et al. Extracting reflected waves from acoustic logging data based on the shearlet transform[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11): 1688-1692. DOI: 10.1109/LGRS.2019.2908286.
    [13]
    WANG X, LIU S. Noise suppressing and direct wave arrivals removal in GPR data based on Shearlet transform[J]. Signal processing, 2017, 132: 227-242. DOI: 10.1016/j.sigpro.2016.05.007.
    [14]
    ASSOUS S, ELKINGTON P. Shearlets and sparse representation for microresistivity borehole image inpainting[J]. Geophysics, 2018, 83(1): D17-D25. DOI: 10.1190/geo2017-0279.1.
    [15]
    HÄUSER S, STEIDL G. Fast finite shearlet transform[J]. arXiv preprint arXiv: 1202.1773, 2012. DOI: 10.48550/arXiv.1202.1773.
    [16]
    Pu Y, Liu G, Wang D, et al. Wave-equation traveltime and amplitude for Kirchhoff migration[C]//First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021: 2684-2688.
    [17]
    YUE Y, LIU Y, GRAY S H. Accelerating least-squares Kirchhoff time migration using beam methodology[J]. Geophysics, 2021, 86(3): S221-S234. DOI: 10.1190/geo2020-0629.1.
    [18]
    TANG X M, PATTERSON D J. Single-well S-wave imaging using multicomponent dipole acoustic-log data[J]. Geophysics, 2009, 74(6): WCA211-WCA223. DOI: 10.1190/1.3227150.
    [19]
    ARIAN A, ALTHOFF G, VARSAMIS G L, et al. A new MWD full wave dual mode sonic tool design and case histories[C]//SPWLA Annual Logging Symposium. SPWLA, 1999: SPWLA-1999-F.
    [20]
    MARKET J, BILBY C. Introducing the first LWD crossed-dipole sonic imaging service[C]//SPWLA Annual Logging Symposium. SPWLA, 2011: SPWLA-2011-DDD.
  • Related Articles

    [1]LIU Yuxin, WEI Jiaotong, ZHAO Xiaojie, CHEN Ping, PAN Jinxiao. A Correction Method for Hardening Artifacts in CT Images Based on Integral Invariance[J]. CT Theory and Applications, 2025, 34(4): 571-579. DOI: 10.15953/j.ctta.2025.064
    [2]OUYANG Min, LIU Shou-wei, LI Lie, WANG Da-wei. Kirchhoff Integral Prestack Time Migration with Full Azimuth Angle Gathers Generation Method and its Implementation[J]. CT Theory and Applications, 2018, 27(6): 739-747. DOI: 10.15953/j.1004-4140.2018.27.06.07
    [3]LI Jing-he, LUO Dong-de, LI Guang-cong, LI Zhang-wei, LUO Tian-ya. Integral Equation Based-fast Forward and Inverse Algorithms for Complex Targets in Controlled Source Electromagnetic Exploration[J]. CT Theory and Applications, 2017, 26(5): 649-659. DOI: 10.15953/j.1004-4140.2017.26.05.16
    [4]GONG Shu, REN Qin-qin, WANG Min-ling. Application of Parabolic Radon Transform in the Suppression of Multiple Seismic Wave[J]. CT Theory and Applications, 2017, 26(2): 165-176. DOI: 10.15953/j.1004-4140.2017.26.02.05
    [5]KONG Xue, HU Qiu-yuan, LIU Dan, WANG Wei, YANG Jian-lei, LI Xiao. Research on RTM and Kirchhoff Migration Gathering[J]. CT Theory and Applications, 2016, 25(5): 507-514. DOI: 10.15953/j.1004-4140.2016.25.05.01
    [6]LI Zeng-yun, LÜ Dong-hui. Fast-correction of Rotating Center Offset with Part Views Sinogram in 2D CT[J]. CT Theory and Applications, 2015, 24(4): 533-543. DOI: 10.15953/j.1004-4140.2015.24.04.07
    [7]WANG Li-xin, HUANG Guang-tan, ZHANG Bin-bin, ZHU Wen-bo, ZHANG Jun-hua. Suppressing Method Study and Application of Seismic Scattered Wave Based on Local Hyperbolic Radon Transform[J]. CT Theory and Applications, 2014, 23(1): 27-36.
    [8]CAI Xiao-gang. Far-Field P-Wave Radiation Pattern from ATI Shear Dislocation:Theoretical Studies[J]. CT Theory and Applications, 2011, 20(4): 433-452.
    [9]YU Yong-peng, LI Zhen-yu, GONG Sheng-ping, HUANG Wei, ZHOU Xin. The Effectiveness Analysis of Integrative Geophysical Methods on Detecting the Artificial Cavity[J]. CT Theory and Applications, 2008, 17(3): 44-49.
    [10]DAN Na-lin, ZHU De-bing, HUANG Xi-liu. The Test Method of Concrete Elements Integrity Using Seismic Image Profiling[J]. CT Theory and Applications, 2002, 11(2): 1-4.

Catalog

    Article views (56) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return