ISSN 1004-4140
CN 11-3017/P
WEN Deying, PAN Xuelin, YAO Hui, LI Jijie, DENG Qiao, TANG Lu, WU Xi, SUN Jiayu. To Explore the Effect of CT Scan Dose on the Efficacy of Artificial Intelligence in Detecting Lung Nodules[J]. CT Theory and Applications, 2021, 30(4): 455-465. DOI: 10.15953/j.1004-4140.2021.30.04.06
Citation: WEN Deying, PAN Xuelin, YAO Hui, LI Jijie, DENG Qiao, TANG Lu, WU Xi, SUN Jiayu. To Explore the Effect of CT Scan Dose on the Efficacy of Artificial Intelligence in Detecting Lung Nodules[J]. CT Theory and Applications, 2021, 30(4): 455-465. DOI: 10.15953/j.1004-4140.2021.30.04.06

To Explore the Effect of CT Scan Dose on the Efficacy of Artificial Intelligence in Detecting Lung Nodules

More Information
  • Received Date: April 28, 2021
  • Available Online: September 23, 2021
  • Objective: To explore the factors that affect the effectiveness of artificial intelligence systems in detecting lung nodules, and strive to provide personalized scanning conditions and artificial intelligence systems for nodules of different natures, and provide references for the appropriate scanning conditions of various artificial intelligence systems. Methods: Standard adult male chest X-ray/CT image model, in which 15 simulated lung nodules with different density and size are randomly distributed was scanned by different tube voltages and tube current at a total of 50 times. The artificial intelligence systems of different companies are used to detect lung nodules. The Pearson χ2 test or Fisher exact probability method is used to compare the detection rate and false negative rate of each group; the Kruskal-Wallis H test is used to compare the false positive rate. Results: (1) Under different kV conditions, the detection rates of nodules of different densities and sizes of company A and C were not statistically different; the detection rate of +100 nodules in company B is higher in the 70kV (100%) group than that in the 120kV (80%) and 140kV (80%) group; the detection rate of 3mm nodules in company B was higher in the 70kV group (33.33%) than in the 120kV (0%) and 140kV (0%) group. (2) There was no significant difference in detection rate and false negative rate among different mAs in each kV group of the three companies or each kV group. The difference in false positive rate among the kV groups was statistically significant. (3) The detection rate of company A in the70kV group (64.44%) is lower than that of company B (80.00%), and the false negative rate (35.56%) is higher than that of company B (20.00%); The false positive rate of company A is higher than that of company B and company C. There is no statistical difference in the detection rate, false negative rate, and false positive rate between company B and C. Conclusions: The sensitivity of artificial intelligence-assisted lung nodule detection has nothing to do with the CT scan dose, but is related to the nature of the nodule and the performance of the AI system. In this study, the overall performance of company B and C is higher than that of company A, and the best scanning tube voltages are 70kV, 70kV, and 100kV respectively.
  • [1]
    肖佳龙, 郑莹. 全球肺癌的流行及预防进展[J]. 中国癌症杂志, 2020, 30(10):721-725.

    XIAO J L, ZHENG Y. The global prevalence and prevention progress of lung cancer[J]. China Oncology, 2020, 30(10):721-725. (in Chinese).
    [2]
    王婧璇, 林岚, 赵思远, 等. 基于深度学习的肺结节计算机断层扫描影像检测与分类的研究进展[J]. 生物医学工程学杂志, 2019, 36(4):670-676.

    WANG J X, LIN L, ZHAO S Y, et al. Research progress on computed tomography image detection and classification of pulmonary nodule based on deep learning[J]. Journal of biomedical engineering, 2019, 36(4):670-676. (in Chinese).
    [3]
    姚本波, 余建群. CT纹理特征分析在孤立性肺结节诊断中的研究进展[J]. CT理论与应用研究, 2020, 29(1):111-118.

    DOI:10.15953/j.1004-4140.2020.29.01.14. YAO B B, YU J Q. Advance of CT texture feature analysis in diagnosis of solitary pulmonary nodules[J]. CT Theory and Applications, 2020, 29(1):111-118. DOI:10.15953/j.1004-4140. 2020.29.01.14. (in Chinese).
    [4]
    陈震, 郁开朗. 人工智能影像软件在体检肺结节筛查中的应用分析[J]. 当代医学, 2020, 26(28):171-173.
    [5]
    陈中博, 陆青云, 王艳. 人工智能在胸部低剂量CT体检人群中应用的评价[J]. 影像研究与医学应用, 2020, 4(7):98-99.
    [6]
    周其敏, 吴志伟, 钟庆童, 等. 人工智能肺小结节检测系统在低剂量CT肺筛查中的价值[J]. 医学影像学杂志, 2020, 30(11):2025-2028.

    ZHOU Q M, WU Z W, ZHONG Q T, et al. The value of artificial intelligence pulmonary nodules detection system in low-dose CT lung screening[J]. Journal of Medical Imaging, 2020, 30(11):2025-2028. (in Chinese).
    [7]
    CHRISTE A, SZUCS-FARKAS Z, HUBER A, et al. Optimal dose levels in screening chest CT for unimpaired detection and volumetry of lung nodules, with and without computer assisted detection at minimal patient radiation[J]. PLoS One, 2013, 8(12):e82919.
    [8]
    杨文洁, 吴梦熊, 张欢, 等. 胸部低剂量CT中肺结节自动测量软件的体模研究[J]. 中国医学计算机成像杂志, 2015, 21(4):382-386.

    YANG W J, WU M X, ZHANG H, et al. Influence of exposure parameters nodule characteristics on computer-assisted lung nodule volumetry in low-dose CT:A phantom study[J]. Chinese Computed Medical Imaging, 2015, 21(4):382-386. (in Chinese).
    [9]
    崔兆国, 吴昊, 汤敏, 等. 重建层厚(1/2/3mm)对人工智能检测肺结节效能的影响[J]. 中国医疗设备, 2020, 35(10):103-105.

    CUI Z G, WU H, TANG M, et al. Effect of reconstruction thickness (1/2/3mm) on effectiveness of artificial intelligence in detecting pulmonary nodules[J]. China Medical Devices, 2020, 35(10):103-105. (in Chinese).
    [10]
    朱熹, 夏巍, 周中柱, 等. 低剂量CT不同重建技术对计算机辅助诊断肺结节的影响[J]. 放射学实践, 2019, 34(11):1255-1259.

    ZHU X, XIA W, ZHOU Z Z, et al. Effect of different reconstruction techniques on computer-aided diagnosis of pulmonary nodules in low-dose CT[J]. Radiologic Practice, 2019, 34(11):1255-1259. (in Chinese).
    [11]
    曹源, 李丹阳, 张扬, 等. 100kVP管电压不同重建算法对AI辅助检测肺结节效能影响[J]. 放射学实践, 2020, 35(10):1324-1328.

    CAO Y, LI D Y, ZHANG Y, et al. Influence of iterative reconstruction algorithm on deep learning-based pulmonary nodule detection in 100kVp CT scans[J]. Radiologic Practice, 2020, 35(10):1324-1328. (in Chinese).
    [12]
    杨尚文, 胡安宁, 徐亚运, 等. CT图像分辨率对人工智能肺结节辅助诊断系统诊断准确性的影响[J]. 医学影像学杂志, 2020, 30(6):965-968.

    YANG S W, HU A N, XU Y Y, et al. Effect of CT image resolution on diagnostic accuracy of artificial intelligence pulmonary nodule-assisted diagnosis system[J]. Journal of Medical Imaging, 2020, 30(6):965-968. (in Chinese).
    [13]
    李欣菱, 郭芳芳, 周振, 等. 基于深度学习的人工智能胸部CT肺结节检测效能评估[J]. 中国肺癌杂志, 2019, 22(6):336-340.

    LI X L, GUO F F, ZHOU Z, et al. Performance of deep-learning-based artificial intelligence on detection of pulmonary nodules in chest CT[J]. Chinese Journal of Lung Cancer, 2019, 22(6):336-340. (in Chinese).
    [14]
    ZHENG S, CUI X, VONDER M, et al. Deep learning-based pulmonary nodule detection:Effect of slab thickness in maximum intensity projections at the nodule candidate detection stage[J]. Computer Methods and Programs in Biomedicine, 2020, 196:105620.
    [15]
    BLANC D, RACINE V, KHALIL A, et al. Artificial intelligence solution to classify pulmonary nodules on CT[J]. Diagnostic and Interventional Imaging, 2020, 101(12):803-810.
    [16]
    FU B, WANG G, WU M, et al. Influence of CT effective dose and convolution kernel on the detection of pulmonary nodules in different artificial intelligence software systems:A phantom study[J]. European Journal of Radiology, 2020, 126:108928.
    [17]
    赵超. 人工智能识别软件辅助阅片在胸部CT肺结节检出中的应用价值[J]. 医疗装备, 2020, 33(22):23-24.
    [18]
    张正华, 蔡雅倩, 韩丹, 等. 人工智能与不同级别医师对肺结节检出效能的对照研究[J]. 中国医学影像学杂志, 2020, 28(9):662-665.

    ZHANG Z H, CAI Y Q, HAN D, et al. Artificial intelligence and various levels of physicians in detection of pulmonary nodules:A comparative Study[J]. Chinese Journal of Medical Imaging, 2020, 28(9):662-665. (in Chinese).
    [19]
    PRAKASHINI K, BABU S, RAJGOPAL K V, et al. Role of computer aided diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography[J]. Lung India, 2016, 33(4):391.
    [20]
    BODELLE B, KLEMENT D, KERL J M, et al. 70kV computed tomography of the thorax:Valence for computer-assisted nodule evaluation and radiation dose-first clinical results[J]. Acta Radiologica, 2014, 55(9):1056-1062.
    [21]
    宫敬, 焦桥, 马质君. 人工智能辅助诊断技术在低剂量CT肺结节筛查中的应用及质控[J]. 影像研究与医学应用, 2020, 4(22):120-121.
    [22]
    宋婷妮, 曾勇明, 周旸, 等. 双能CT单能谱成像检测不同性质孤立性肺结节的实验研究[J]. 中国医学计算机成像杂志, 2016, 22(1):33-38.

    SONG T N, ZENG Y M, ZHOU Y, et al. Virtual monochromatic spectral imaging on solitary pulmonary nodules:A phantom study[J]. Chinese Computed Medical Imaging, 2016, 22(1):33-38. (in Chinese).
  • Related Articles

    [1]WU Rui, NING Kejia, GU Jinfeng, MA Lei, SONG Junbo. Development and Validation of a Nomogram Model for Lung Adenocarcinoma with Ground Glass Nodules Using AI Quantitative Parameters and CT Signs[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.208
    [2]QI Dong, QIAO Xiaochun, SHI Biao, SHEN Yan, HU Shumin, YAO Muzi. The Value of Artificial Intelligence in Post-processing Head and Neck CTA Images and Diagnosing Head and Neck Artery Stenosis[J]. CT Theory and Applications, 2024, 33(6): 790-798. DOI: 10.15953/j.ctta.2023.105
    [3]LIU Qiang, ZENG Yongming, SUN Jingkun, LOU Hao, XIA Xianmei, GE Bing, ZHOU Yu, ZHENG Yue. Analysis of Influencing Factors on Pulmonary Nodule Detection by Computed Tomography with Artificial Intelligence: A Phantom Study[J]. CT Theory and Applications, 2024, 33(4): 471-477. DOI: 10.15953/j.ctta.2023.190
    [4]SU Yinchen, ZHANG Xiaoqin. Artificial Intelligence-assisted Diagnosis in Detecting Lung Nodules and Differentiating Benign from Malignant Nodules[J]. CT Theory and Applications, 2024, 33(3): 325-331. DOI: 10.15953/j.ctta.2023.128
    [5]CHENG Xiaoyue, WU Xiaohua, HAO You, HE Wen, LI Hua, LIU Jiabao, CAO Qiuting. Effect of Computed Tomography Window Technique on the Results of Artificial Intelligence Classification of Lung Lesions[J]. CT Theory and Applications, 2023, 32(4): 515-522. DOI: 10.15953/j.ctta.2022.210
    [6]WANG Jingchen, CHAI Jun. Evaluation of the Invasion of Pulmonary Subsolid Nodules by the Artificial Intelligence Volumetric Density Method[J]. CT Theory and Applications, 2023, 32(2): 241-248. DOI: 10.15953/j.ctta.2022.099
    [7]LIU Na, ZHAO Zhengkai, ZOU Jiayu, LI Yi, LIU Jian. Evaluation of Detection and Diagnostic Efficiency of Pulmonary Nodules by Chest CT Based on Artificial Intelligence[J]. CT Theory and Applications, 2021, 30(6): 709-715. DOI: 10.15953/j.1004-4140.2021.30.06.06
    [8]YIN Ke, ZHOU Rongyu, WU Jianlin. The Research Progress of HRCT-based Diagnostic Models for Differentiating Infiltration Degree of Pure Ground Glass Nodular Lung Adenocarcinoma[J]. CT Theory and Applications, 2020, 29(5): 621-629. DOI: 10.15953/j.1004-4140.2020.29.05.14
    [9]SUN Tingting, WANG Qiong, XIE Mei, FAN Hongyu, ZHANG Qing, WU Jianlin. Detection Efficiency of Residents Assisted by Artificial Intelligence for Pulmonary Solid Nodules with Different Sizes: A Preliminary Study[J]. CT Theory and Applications, 2020, 29(4): 465-472. DOI: 10.15953/j.1004-4140.2020.29.04.09
    [10]DENG Jia-xiu, ZHANG Yong-dong, FENG Feng-yin, LIU Juan, CHEN Yu-ying. A Preliminary Study of CT Perfusion Imaging and Dynamic Enhanced for Lung Nodule[J]. CT Theory and Applications, 2008, 17(2): 66-73.
  • Cited by

    Periodical cited type(4)

    1. 尹振琪,吴俊峰,朱石柱. 人工智能辅助诊断系统结合低剂量CT在肺小结节筛查中的应用进展. 影像研究与医学应用. 2024(24): 7-9 .
    2. 王璟琛,柴军. 人工智能体积密度法判断肺亚实性结节的浸润性研究. CT理论与应用研究. 2023(02): 241-248 . 本站查看
    3. 王和良,苏良宝,蔡少辉,杜丽珠. 人工智能辅助诊断系统在肺结节CT检测中的应用分析. 中国医疗器械信息. 2023(05): 91-93+161 .
    4. 苏寅晨,张晓琴. 人工智能在肺结节检测及诊断中的应用进展. 内蒙古医学杂志. 2023(04): 506-508 .

    Other cited types(1)

Catalog

    Article views (214) PDF downloads (23) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return