Citation: | WEN Deying, PAN Xuelin, YAO Hui, LI Jijie, DENG Qiao, TANG Lu, WU Xi, SUN Jiayu. To Explore the Effect of CT Scan Dose on the Efficacy of Artificial Intelligence in Detecting Lung Nodules[J]. CT Theory and Applications, 2021, 30(4): 455-465. DOI: 10.15953/j.1004-4140.2021.30.04.06 |
[1] |
肖佳龙, 郑莹. 全球肺癌的流行及预防进展[J]. 中国癌症杂志, 2020, 30(10):721-725.
XIAO J L, ZHENG Y. The global prevalence and prevention progress of lung cancer[J]. China Oncology, 2020, 30(10):721-725. (in Chinese).
|
[2] |
王婧璇, 林岚, 赵思远, 等. 基于深度学习的肺结节计算机断层扫描影像检测与分类的研究进展[J]. 生物医学工程学杂志, 2019, 36(4):670-676.
WANG J X, LIN L, ZHAO S Y, et al. Research progress on computed tomography image detection and classification of pulmonary nodule based on deep learning[J]. Journal of biomedical engineering, 2019, 36(4):670-676. (in Chinese).
|
[3] |
姚本波, 余建群. CT纹理特征分析在孤立性肺结节诊断中的研究进展[J]. CT理论与应用研究, 2020, 29(1):111-118.
DOI:10.15953/j.1004-4140.2020.29.01.14. YAO B B, YU J Q. Advance of CT texture feature analysis in diagnosis of solitary pulmonary nodules[J]. CT Theory and Applications, 2020, 29(1):111-118. DOI:10.15953/j.1004-4140. 2020.29.01.14. (in Chinese).
|
[4] |
陈震, 郁开朗. 人工智能影像软件在体检肺结节筛查中的应用分析[J]. 当代医学, 2020, 26(28):171-173.
|
[5] |
陈中博, 陆青云, 王艳. 人工智能在胸部低剂量CT体检人群中应用的评价[J]. 影像研究与医学应用, 2020, 4(7):98-99.
|
[6] |
周其敏, 吴志伟, 钟庆童, 等. 人工智能肺小结节检测系统在低剂量CT肺筛查中的价值[J]. 医学影像学杂志, 2020, 30(11):2025-2028.
ZHOU Q M, WU Z W, ZHONG Q T, et al. The value of artificial intelligence pulmonary nodules detection system in low-dose CT lung screening[J]. Journal of Medical Imaging, 2020, 30(11):2025-2028. (in Chinese).
|
[7] |
CHRISTE A, SZUCS-FARKAS Z, HUBER A, et al. Optimal dose levels in screening chest CT for unimpaired detection and volumetry of lung nodules, with and without computer assisted detection at minimal patient radiation[J]. PLoS One, 2013, 8(12):e82919.
|
[8] |
杨文洁, 吴梦熊, 张欢, 等. 胸部低剂量CT中肺结节自动测量软件的体模研究[J]. 中国医学计算机成像杂志, 2015, 21(4):382-386.
YANG W J, WU M X, ZHANG H, et al. Influence of exposure parameters nodule characteristics on computer-assisted lung nodule volumetry in low-dose CT:A phantom study[J]. Chinese Computed Medical Imaging, 2015, 21(4):382-386. (in Chinese).
|
[9] |
崔兆国, 吴昊, 汤敏, 等. 重建层厚(1/2/3mm)对人工智能检测肺结节效能的影响[J]. 中国医疗设备, 2020, 35(10):103-105.
CUI Z G, WU H, TANG M, et al. Effect of reconstruction thickness (1/2/3mm) on effectiveness of artificial intelligence in detecting pulmonary nodules[J]. China Medical Devices, 2020, 35(10):103-105. (in Chinese).
|
[10] |
朱熹, 夏巍, 周中柱, 等. 低剂量CT不同重建技术对计算机辅助诊断肺结节的影响[J]. 放射学实践, 2019, 34(11):1255-1259.
ZHU X, XIA W, ZHOU Z Z, et al. Effect of different reconstruction techniques on computer-aided diagnosis of pulmonary nodules in low-dose CT[J]. Radiologic Practice, 2019, 34(11):1255-1259. (in Chinese).
|
[11] |
曹源, 李丹阳, 张扬, 等. 100kVP管电压不同重建算法对AI辅助检测肺结节效能影响[J]. 放射学实践, 2020, 35(10):1324-1328.
CAO Y, LI D Y, ZHANG Y, et al. Influence of iterative reconstruction algorithm on deep learning-based pulmonary nodule detection in 100kVp CT scans[J]. Radiologic Practice, 2020, 35(10):1324-1328. (in Chinese).
|
[12] |
杨尚文, 胡安宁, 徐亚运, 等. CT图像分辨率对人工智能肺结节辅助诊断系统诊断准确性的影响[J]. 医学影像学杂志, 2020, 30(6):965-968.
YANG S W, HU A N, XU Y Y, et al. Effect of CT image resolution on diagnostic accuracy of artificial intelligence pulmonary nodule-assisted diagnosis system[J]. Journal of Medical Imaging, 2020, 30(6):965-968. (in Chinese).
|
[13] |
李欣菱, 郭芳芳, 周振, 等. 基于深度学习的人工智能胸部CT肺结节检测效能评估[J]. 中国肺癌杂志, 2019, 22(6):336-340.
LI X L, GUO F F, ZHOU Z, et al. Performance of deep-learning-based artificial intelligence on detection of pulmonary nodules in chest CT[J]. Chinese Journal of Lung Cancer, 2019, 22(6):336-340. (in Chinese).
|
[14] |
ZHENG S, CUI X, VONDER M, et al. Deep learning-based pulmonary nodule detection:Effect of slab thickness in maximum intensity projections at the nodule candidate detection stage[J]. Computer Methods and Programs in Biomedicine, 2020, 196:105620.
|
[15] |
BLANC D, RACINE V, KHALIL A, et al. Artificial intelligence solution to classify pulmonary nodules on CT[J]. Diagnostic and Interventional Imaging, 2020, 101(12):803-810.
|
[16] |
FU B, WANG G, WU M, et al. Influence of CT effective dose and convolution kernel on the detection of pulmonary nodules in different artificial intelligence software systems:A phantom study[J]. European Journal of Radiology, 2020, 126:108928.
|
[17] |
赵超. 人工智能识别软件辅助阅片在胸部CT肺结节检出中的应用价值[J]. 医疗装备, 2020, 33(22):23-24.
|
[18] |
张正华, 蔡雅倩, 韩丹, 等. 人工智能与不同级别医师对肺结节检出效能的对照研究[J]. 中国医学影像学杂志, 2020, 28(9):662-665.
ZHANG Z H, CAI Y Q, HAN D, et al. Artificial intelligence and various levels of physicians in detection of pulmonary nodules:A comparative Study[J]. Chinese Journal of Medical Imaging, 2020, 28(9):662-665. (in Chinese).
|
[19] |
PRAKASHINI K, BABU S, RAJGOPAL K V, et al. Role of computer aided diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography[J]. Lung India, 2016, 33(4):391.
|
[20] |
BODELLE B, KLEMENT D, KERL J M, et al. 70kV computed tomography of the thorax:Valence for computer-assisted nodule evaluation and radiation dose-first clinical results[J]. Acta Radiologica, 2014, 55(9):1056-1062.
|
[21] |
宫敬, 焦桥, 马质君. 人工智能辅助诊断技术在低剂量CT肺结节筛查中的应用及质控[J]. 影像研究与医学应用, 2020, 4(22):120-121.
|
[22] |
宋婷妮, 曾勇明, 周旸, 等. 双能CT单能谱成像检测不同性质孤立性肺结节的实验研究[J]. 中国医学计算机成像杂志, 2016, 22(1):33-38.
SONG T N, ZENG Y M, ZHOU Y, et al. Virtual monochromatic spectral imaging on solitary pulmonary nodules:A phantom study[J]. Chinese Computed Medical Imaging, 2016, 22(1):33-38. (in Chinese).
|
1. |
尹振琪,吴俊峰,朱石柱. 人工智能辅助诊断系统结合低剂量CT在肺小结节筛查中的应用进展. 影像研究与医学应用. 2024(24): 7-9 .
![]() | |
2. |
王璟琛,柴军. 人工智能体积密度法判断肺亚实性结节的浸润性研究. CT理论与应用研究. 2023(02): 241-248 .
![]() | |
3. |
王和良,苏良宝,蔡少辉,杜丽珠. 人工智能辅助诊断系统在肺结节CT检测中的应用分析. 中国医疗器械信息. 2023(05): 91-93+161 .
![]() | |
4. |
苏寅晨,张晓琴. 人工智能在肺结节检测及诊断中的应用进展. 内蒙古医学杂志. 2023(04): 506-508 .
![]() |