ISSN 1004-4140
CN 11-3017/P
LI S T, MO Y C, ZHANG H M, et al. The value of spectral CT quantitative analysis in the differential diagnosis of lung squamous cell carcinoma and adenocarcinoma[J]. CT Theory and Applications, 2022, 31(1): 80-86. DOI: 10.15953/j.1004-4140.2022.31.01.09. (in Chinese).
Citation: LI S T, MO Y C, ZHANG H M, et al. The value of spectral CT quantitative analysis in the differential diagnosis of lung squamous cell carcinoma and adenocarcinoma[J]. CT Theory and Applications, 2022, 31(1): 80-86. DOI: 10.15953/j.1004-4140.2022.31.01.09. (in Chinese).

The Value of Spectral CT Quantitative Analysis in the Differential Diagnosis of Lung Squamous Cell Carcinoma and Adenocarcinoma

More Information
  • Received Date: May 06, 2021
  • Available Online: November 09, 2021
  • Objective: To investigate the value of energy spectrum CT multi-parameter quantitative analysis in the differential diagnosis of lung squamous cell carcinoma and adenocarcinoma. Methods: Seventy-five patients with lung cancer who were confirmed by pathology and underwent energy spectrum CT scanning were collected, including 40 cases of squamous cell carcinoma and 35 cases of adenocarcinoma. We measured and compared the energy spectrum parameters of arterial phase and venous phase between the two groups. Results: The spectrum curve of adenocarcinoma (λ40~65 keV) in arterial and venous phase, effective atomic number, concentration of iodine (water) and standardized iodine concentration were greater than that of squamous carcinoma, the difference was statistically significant, the difference of water (iodine) concentration between the two groups of arterial phase held no statistical significance, the water (iodine) concentration of adenocarcinoma was lower than that of squamous cell carcinomas, the difference was statistically significant. The results of ROC curve analysis showed that the energy spectrum (λ40~65 keV) in the venous phase was of great value in the differentiation of squamous cell carcinoma and adenocarcinoma, with the AUC of 0.839, the sensitivity of 88.6% and the specificity of 72.5%. Conclusion: Adenocarcinoma and squamous cell carcinoma of lung show different energy spectrum CT parameters. It holds certain value to distinguish them, which can provide a new method for preoperative diagnosis.

  • [1]
    WU F, ZHOU H, LI F, et al. Spectral CT imaging of lung cancer: Quantitative analysis of spectral parameters and their correlation with tumor characteristics[J]. Academic Radiology, 2018, 25(11): 1398−1404. doi: 10.1016/j.acra.2018.04.017
    [2]
    戴钢, 邓克学, 韦炜, 等. 能谱CT平扫定量分析在非小细胞肺癌与炎性肿块中的鉴别价值[J]. 中国医学计算机成像杂志, 2019,25(1): 23−26. doi: 10.3969/j.issn.1006-5741.2019.01.006

    DAI G, DENG K X, WEI W, et al. Quantitative analysis of in non-small cell lung cancer and inflammatory mass with spectral CT[J]. Chinese Computed Medical Imaging, 2019, 25(1): 23−26. (in Chinese). doi: 10.3969/j.issn.1006-5741.2019.01.006
    [3]
    李琦, 罗天友, 吕发金, 等. 能谱 CT 定量分析在确定非小细胞肺癌病理类型中的价值[J]. 中华放射学杂志, 2017,51(4): 257−261. doi: 10.3760/cma.j.issn.1005-1201.2017.04.005

    LI Q, LUO T Y, LV F J, et al. The value of quantitative analysis with spectral CT imaging in the diagnosis of non-small cell lung cancer with different pathological types[J]. Chinese Journal of Radiology, 2017, 51(4): 257−261. (in Chinese). doi: 10.3760/cma.j.issn.1005-1201.2017.04.005
    [4]
    KHANDURI S, BHAGAT S, SHOKEEN P, et al. Rationale of using dynamic imaging for characterization of suspicious lung masses into benign or malignant on contrast enhanced multi detector computed tomography[J]. Journal of Clinical Imaging Science, 2017, 7(24): 1−8.
    [5]
    MARIN D, CHOUDHURY K R, GUPTA R T, et al. Clinical impact of an adaptive statistical iterative reconstruction algorithm for detection of hypervascular liver tumors using a low tube voltage, high tube current MDCT technique[J]. European Radiology, 2013, 23(12): 3325−3335. doi: 10.1007/s00330-013-2964-1
    [6]
    SILVA A C, MORSE B G, HARA A K, et al. Dual-energy (spectral) CT: Applications in abdominal imaging[J]. Radiographics, 2011, 31(4): 1031−1046. doi: 10.1148/rg.314105159
    [7]
    LI L, ZHAO Y, LUO D, et al. Diagnostic value of single-source dual-energy spectral computed tomography in differentiating parotid gland tumors: Initial results[J]. Quantitative Imaging in Medicine and Surgery, 2018, 8(6): 588−596. doi: 10.21037/qims.2018.07.07
    [8]
    YIN X P, GAO B L, LI C Y, et al. Optimal monochromatic imaging of spectral computed tomography potentially improves the quality of hepatic vascular imaging[J]. Korean Journal of Radiology, 2018, 19(4): 578−584. doi: 10.3348/kjr.2018.19.4.578
    [9]
    陈盈, 姚婷, 郑昊, 等. CT 能谱在原发性肺癌病理分型中的应用[J]. 医学影像学杂志, 2016,26(7): 1222−1225.

    CHEN Y, YAO T, ZHENG H, et al. Applications of gemstone spectrum CT in pathological type of primary lung cancer[J]. Journal of Medical Imaging, 2016, 26(7): 1222−1225. (in Chinese).
    [10]
    OTRAKJI A, DIGUMARTHY S R, Lo GULLO R, et al. Dual-energy CT: Spectrum of thoracic abnormalities[J]. Radiographics a Review Publication of the Radiological Society of North America Inc, 2016, 36(1): 38−52. doi: 10.1148/rg.2016150081
    [11]
    黄倩文, 陈应东, 钟华, 等. 肺癌能谱 CT 相关参数定量与临床应用[J]. 临床放射学杂志, 2020,39(7): 1316−1321.

    HUANG Q W, CHEN Y D, ZHONG H, et al. Quantification of energy spectrum CT parameters in the diagnosis of lung cancer and clinical application[J]. Journal of Clinical Radiology, 2020, 39(7): 1316−1321. (in Chinese).
    [12]
    任占丽, 贺太平, 张喜荣, 等. 能谱 CT 多参数成像在鉴别肺癌病理类型中的价值[J]. 中国中西医结合影像学杂志, 2020,18(5): 486−501. doi: 10.3969/j.issn.1672-0512.2020.05.015

    REN Z L, HE T P, ZHANG X R, et al. Application of spectral CT multi-parameter in differentiating pathological types of lung cancer[J]. Chinese Imaging Journal of Integrated Traditional and Western Medicine, 2020, 18(5): 486−501. (in Chinese). doi: 10.3969/j.issn.1672-0512.2020.05.015
    [13]
    CHEN X, XU Y, DUAN J, et al. Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer[J]. Medicine (Baltimore), 2017, 96(28): e7479. doi: 10.1097/MD.0000000000007479
    [14]
    JIA Y, XIAO X, SUN Q, et al. Gemstone spectral imaging in lung cancer: A preliminary study[J]. Medicine (Baltimore), 2018, 97(29): e11170. doi: 10.1097/MD.0000000000011170
    [15]
    彭佳璇, 江广斌, 姜伦. 能谱 CT 在肝脏富血供病变中的应用和研究进展[J]. CT理论与应用研究, 2021,30(2): 253−262. DOI: 10.15953/j.1004-4140.2021.30.02.13.

    PENG J X, JIANG G B, JIANG L. Application and research progress of spectral CT in hypervascular hepatic lesions[J]. CT Theory and Applications, 2021, 30(2): 253−262. DOI: 10.15953/j.1004-4140.2021.30.02.13. (in Chinese).
    [16]
    胡蓉, 徐耀, 侯金鹏, 等. 能谱 CT 多参数定量分析对鉴别肺癌病理类型的价值[J]. 实用放射学杂志, 2019,35(3): 464−468.

    HU R, XU Y, HOU J P, et al. The value of spectral CT imaging in multi-parameter quantitative analysis of lung cancer with different pathological types[J]. Journal of Practical Radiology, 2019, 35(3): 464−468. (in Chinese).
    [17]
    温青云, 侯阳. 能谱 CT 在肺结节诊断及治疗中的应用进展[J]. 中国介入影像与治疗学, 2020,17(5): 315−318.

    WEN Q Y, HOU Y. Advancements of dual-energy CT in diagnosis and treatment of pulmonary nodules[J]. Chinese Journal of Interventional Imaging and Therapy, 2020, 17(5): 315−318. (in Chinese).
    [18]
    LIN L Y, ZHANG Y, SUO S T, et al. Correlation between dual-energy spectral CT imaging parameters and pathological grades of non-small cell lung cancer[J]. Clinical Radiology, 2018, 73(4): 412.e1−412.e7. doi: 10.1016/j.crad.2017.11.004
    [19]
    HUA C H, SHAPIRA N, MERCHANT T E, et al. Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual-layer dual-energy computed tomography system[J]. Medical Physics, 2018, 45(6): 2486−2497. doi: 10.1002/mp.12903
  • Related Articles

    [1]ZHANG Kaige, WANG Chunxia, GAO Duo, FU Kailiang. Application Value of Myocardial Extracellular Volume in Preoperative Assessment of TAVI[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.163
    [2]ZHAO Qiqi, FENG Li, LIU Yuquan, WANG Meifang. Correlation between Emphysema Volume and Small Shadow Density on CT and the Lung Function in Pneumoconiosis[J]. CT Theory and Applications, 2023, 32(1): 121-129. DOI: 10.15953/j.ctta.2021.049
    [3]YANG Zhenxing, HAO Fene, ZHAO Lei, YANG Xiaoguang, LIU aishi. Characteristic Analysis of the Time-density Curve of Volume Shuttle CT Perfusion of Benign Parotid Tumors[J]. CT Theory and Applications, 2021, 30(5): 575-582. DOI: 10.15953/j.1004-4140.2021.30.05.05
    [4]DONG Xiangyu, FANG Tingsong, WANG Wenhui, YUAN Jianxiang, FENG Youli, LIANG Zhenhua, YANG Yanbin. The Correlation between Epicardial Adipose Tissue Volume Indexed to Body Surface Area and Atrial Fibrillation[J]. CT Theory and Applications, 2020, 29(6): 702-710. DOI: 10.15953/j.1004-4140.2020.29.06.08
    [5]CHEN Rui-sen, XIA Jun, CHEN Jian-liang, LI Ai-dong, LI Xiang. Cross-sectional Study on the Relationship Between Integral Cognitive Level and Gray Matter Volume in Patients with Alzheimer's Disease Based on VBM[J]. CT Theory and Applications, 2018, 27(6): 709-717. DOI: 10.15953/j.1004-4140.2018.27.06.04
    [6]LUO Yan-ting, ZHANG Wei-dong, ZHONG Rui. Volume Changes in Normal-Appearing Gray Matter for Nasopharyngeal Carcinoma by Using MR Voxel-based Morphometry[J]. CT Theory and Applications, 2017, 26(6): 745-750. DOI: 10.15953/j.1004-4140.2017.26.06.11
    [7]CAO Hua, CAO Jia-yi. Developments and Evaluated for Intracranial Aneurysm Imaging Reconstruction Algorithms by 320 Slice Dynamic Volume CT[J]. CT Theory and Applications, 2014, 23(2): 329-335.
    [8]HAN Yu, XIA Xiao-niu, SHAO Li-kang, DING Hou-ben. Volume Rendering of Multilayer Surface Based on Data From CBS Scanner[J]. CT Theory and Applications, 2008, 17(2): 46-50.
    [9]WANG Hui-zhi, SUN Lu, YAN Gang, CENG Qing-yu. Comparison of X-ray Radiate Side Photograph and Computerized Tomography for Nasal Bone Fracture[J]. CT Theory and Applications, 2002, 11(3): 33-38.
    [10]Wang Xianquan, Li Xinhua, Liu Ying. Diagnosing Value of CT in Occult Fracture[J]. CT Theory and Applications, 2000, 9(3): 48-51.

Catalog

    Article views (478) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return