Citation: | HUO M, LI L G, SUN Y, et al. Analysis of Coronavirus Disease 2019 Chest High-resolution Computed Tomography Manifestations between Groups with Different Neutrophil- to-Lymphocyte Ratios[J]. CT Theory and Applications, 2023, 32(3): 387-394. DOI: 10.15953/j.ctta.2023.027. (in Chinese). |
[1] |
LIU Y, DU X, CHEN J, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19[J]. Journal of Infection, 2020, 81(1): e6−e12. doi: 10.1016/j.jinf.2020.04.002
|
[2] |
YANG A P, LIU J P, TAO W Q, et al. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients[J]. International Immunopharmacology, 2020, 84: 106504. doi: 10.1016/j.intimp.2020.106504
|
[3] |
LI X, LIU C, MAO Z, et al. Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: Systematic review and meta-analysis[J]. Critical Care, 2020, 24(1): 647. doi: 10.1186/s13054-020-03374-8
|
[4] |
费明明, 童飞, 陶小根, 等. 中性粒细胞/淋巴细胞比值对新型冠状病毒肺炎患者疾病分型的诊断价值[J]. 中华危重病急救医学, 2020,32(5): 554−558. doi: 10.3760/cma.j.cn121430-20200413-00506
FEI M M, TONG F, TAO X G, et al. Value of neutrophil-to-lymphocyte ratio in the classification diagnosis of coronavirus disease 2019[J]. Chinese Critical Care Medicine, 2020, 32(5): 554−558. (in Chinese). doi: 10.3760/cma.j.cn121430-20200413-00506
|
[5] |
李文平, 张鹏举, 许金环, 等. 免疫检查点抑制剂相关肺炎的临床及CT表现分析[J]. 中华放射学杂志, 2022,56(12): 1352−1358. doi: 10.3760/cma.j.cn112149-20220217-00126
LI W P, ZHANG P J, XU J H, et al. Clinical and CT imaging features of immune checkpoint inhibitor-associated pneumonia[J]. Chinese Journal of Radiology, 2022, 56(12): 1352−1358. (in Chinese). doi: 10.3760/cma.j.cn112149-20220217-00126
|
[6] |
BUONACERA A, STANCANERLLI B, COLACI M, et al. Neutrophil to lymphocyte ratio: An emerging marker of the relationships between the immune system and diseases[J]. International Journal of Molecular Sciences, 2022, 23(7): 3636.
|
[7] |
FEST J, RUITER T R, GROOT KOERKAMP B, et al. The neutrophil-to-lymphocyte ratio is associated with mortality in the general population: The rotterdam study[J]. European Journal of Epidemiology, 2019, 34(5): 463-470.
|
[8] |
SIMADIBRATA D M, CALVIN J, WIJAYA A D, et al. Neutrophil-to-lymphocyte ratio on admission to predict the severity and mortality of COV9 patients: A meta-analysis[J]. American Journal of Emergency Medicine, 2021, 42: 60−69. doi: 10.1016/j.ajem.2021.01.006
|
[9] |
CAI J, LI H, ZHANG C, et al. The neutrophil-to-lymphocyte ratio determines clinical efficacy of corticosteroid therapy in patients with COVID-19[J]. Cell Metabolism, 2021, 33(2): 258−269. e3. doi: 10.1016/j.cmet.2021.01.002
|
[10] |
BATAH S S, ABRO A T. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians[J]. Respiratory Medicine, 2021, 176: 106239. doi: 10.1016/j.rmed.2020.106239
|
[11] |
RUBIN G D, YERSON C J, HARAMATI L B, et al. The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the Fleischner Society[J]. Radiology, 2020, 296(1): 172-180.
|
[12] |
KWEE T C, KWEE R M. Chest CT in COVID-19: What the radiologist needs to know[J]. Radiographics, 2020, 40(7): 1848−1865. doi: 10.1148/rg.2020200159
|
[13] |
SIMPSON S, KAY F U, ABBARA S, et al. Radiological Society of North America expert consensus document on reporting chest CT findings related to COVID-19: Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA[J]. Radiology Cardiothoracic Imaging, 2020, 2(2): e200152. doi: 10.1148/ryct.2020200152
|
[14] |
CHO J L, VILLACRESES R, NAGPAL P, et al. Quantitative chest CT assessment of small airways disease in post-acute SARS-CoV-2 infection[J]. Radiology, 2022, 304(1): 185−192. doi: 10.1148/radiol.212170
|
[15] |
TOUSSIE D, VOUTSINAS N, FINKELSTEIN M, et al. Clinical and chest radiography features determine patient outcomes in young and middle-aged adults with COVID-19[J]. Radiology, 2020, 297(1): E197−E206. doi: 10.1148/radiol.2020201754
|
[16] |
孙莹, 李玲, 刘晓燕, 等. 早期新型冠状病毒肺炎的胸部薄层平扫CT表现特征[J]. CT理论与应用研究, 2023,32(1): 131−138. DOI: 10.15953/j.ctta.2023.006.
SUN Y, LI L, LIU X Y, et al. Characteristics of chest thin-slice non-contrast CT in early novel coronavirus pneumonia[J]. CT Theory and Applications, 2023, 32(1): 131−138. DOI: 10.15953/j.ctta.2023.006. (in Chinese).
|
[17] |
LEE J H, KOH J, JEON Y K, et al. An integrated radiologic-pathologic understanding of COVID-19 pneumonia[J]. Radiology, 2023, 306(2): e222600. doi: 10.1148/radiol.222600
|
[18] |
KLIGERMAN S J, TNKSJ F R, GALVIN J R. From the radiologic pathology archives: Organization and fibrosis as a response to lung injury in diffuse alveolar damage, organizing pneumonia, and acute fibrinous and organizing pneumonia[J]. Radiographics, 2013, 33(7): 1951−75. doi: 10.1148/rg.337130057
|
[19] |
LARICI A R, CICCHETTI G, MARANO R, et al. Multimodality imaging of COVID-19 pneumonia from diagnosis to follow-up: A comprehensive review[J]. European Journal of Radiology, 2020, 131: 109217. doi: 10.1016/j.ejrad.2020.109217
|
[20] |
GRASSELLI G, TONETTI T, PROTTI A, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study[J]. The Lancet Respiratory Medicine, 2020, 8(12): 1201−1208. doi: 10.1016/S2213-2600(20)30370-2
|
[21] |
DURHAN G, DÜZGÜN S A, DEMIRKAZIK F B, et al. Visual and software-based quantitative chest CT assessment of COVID-19: Correlation with clinical findings[J]. Diagnostic Interventional Radiology, 2020, 26(6): 557−564. doi: 10.5152/dir.2020.20407
|
[22] |
BERNHEIM A, MEI X, HUANG M, et al. Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection[J]. Radiology, 2020, 295(3): 200463. doi: 10.1148/radiol.2020200463
|
[23] |
INOUE A, TAKAHASHI H, IBE T, et al. Comparison of semiquantitative chest CT scoring systems to estimate severity in coronavirus disease 2019 (COVID-19) pneumonia[J]. European Radiology, 2022, 32(5): 3513−3524. doi: 10.1007/s00330-021-08435-2
|
[24] |
LI K, FANG Y, LI W, et al. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19)[J]. European Radiology, 2020, 30(8): 4407−4416. doi: 10.1007/s00330-020-06817-6
|
[25] |
杜丹, 谢元亮, 李惠, 等. 人工智能定量测量对新型冠状病毒肺炎患者胸部CT炎性病灶动态变化的评估价值[J]. 中华放射学杂志, 2021,55(3): 250−256.
DU D, XIE Y L, LI H, et al. The value of quantitative artificial intelligence measurement in evaluation of CT dynamic changes for COVID-19[J]. Chinese Journal of Radiology, 2021, 55(3): 250−256. (in Chinese).
|
[26] |
NAIK B R, SAKALECHA A K, SUNIL B N, et al. Computed tomography severity scoring on high-resolution computed tomography thorax and inflammatory markers with COVID-19 related mortality in a designated COVID hospital[J]. Cureus, 2022, 14(4): e24190.
|
[1] | KANG Zhaoting, OUYANG Xuehui, CHAI Jun. Differential Diagnosis of COVID-19 and Community-acquired Pneumonia Using Different Machine Learning Methods[J]. CT Theory and Applications, 2023, 32(5): 685-694. DOI: 10.15953/j.ctta.2023.079 |
[2] | ZHANG Yan, HUANG Ruibin, DUAN Yongli, LIU Wei, LI LING, HAO Qi, LI Xingpeng, LIU Mengke, ZHANG Yimeng, SUN Xiaoli, LIU Xiaoyan, WANG Rengui. Imaging Features of Patients with Coronavirus Disease 2019 with/without Underlying Diseases[J]. CT Theory and Applications, 2023, 32(5): 652-658. DOI: 10.15953/j.ctta.2023.030 |
[3] | ZHANG Mingxia, LI Ling, SUN Ying, GUO Jia, DU Changyue, LI Xingpeng, ZHANG Yan, HAO Qi, DUAN Shuhong, LIU Xiaoyan, SUN Lei, HUO Meng, ZHANG Chunyan, WANG Rengui. Comparative Analysis of Clinical and Computed Tomography Imaging Features of COVID-19 with Different Disease Courses[J]. CT Theory and Applications, 2023, 32(3): 380-386. DOI: 10.15953/j.ctta.2023.021 |
[4] | WU Tenghui, ZHA Yunfei, YANG Feng. The Study of Application of Different Pitch Combined with ASIR in Low-dose Chest CT Screening on COVID-19[J]. CT Theory and Applications, 2022, 31(2): 186-194. DOI: 10.15953/j.1004-4140.2022.31.02.05 |
[5] | WEI Dongxu, YAN Lihua, SHI Junqiang. COVID-19 Deep Learning Diagnosis Method Based on Attention Mechanism and Transfer Learning[J]. CT Theory and Applications, 2021, 30(4): 477-486. DOI: 10.15953/j.1004-4140.2021.30.04.08 |
[6] | SHEN Jing, YU Jing, YAN Yingnan, SANG Yarong, JU Ronghui, PAN Long, LI Guize, LI Xin, WU Jianlin. Chest CT Features of COVID-19 and Its Evolution[J]. CT Theory and Applications, 2021, 30(2): 199-207. DOI: 10.15953/j.1004-4140.2021.30.02.07 |
[7] | ZHANG Hecheng, CHU Yan, LIU Jing, LI Xiaozhen, ZHAO Tianzuo. The Clinical Features and CT Manifestations of the Novel Coronavirus Pneumonia COVID-19[J]. CT Theory and Applications, 2020, 29(5): 559-565. DOI: 10.15953/j.1004-4140.2020.29.05.06 |
[8] | WANG Zengkui, ZHANG Zhaofu, PANG Jun, WEI Xiaohua, PANG Hongyan, GAO Dongwei. The Clinical Subtypes of Corona Virus Disease 2019 Correspond to CT Findings and the Value of Artificial Intelligence[J]. CT Theory and Applications, 2020, 29(5): 534-542. DOI: 10.15953/j.1004-4140.2020.29.05.03 |
[9] | LIU Yongbin, CHEN Huai, ZENG Qinsi, LI Jianqin. Chest CT and Clinical Characteristics of COVID-19 Patients with Multiple Ground Glass Shadows[J]. CT Theory and Applications, 2020, 29(3): 289-294. DOI: 10.15953/j.1004-4140.2020.29.03.04 |
[10] | YAO Yonggang, DU Jingbo, LIAO Jianyong, GOU Zhenheng, FU Shunbin, JIN Erhu. Study of Chest CT Features of COVID-19[J]. CT Theory and Applications, 2020, 29(2): 169-176. DOI: 10.15953/j.1004-4140.2020.29.02.07 |
1. |
李梦雨,段诗苗,张雷,周咏春. 提高肺SBRT精度的多窗位动态组合诊疗手段. 中国CT和MRI杂志. 2024(04): 63-65 .
![]() | |
2. |
李玉辉,刘龙进,徐乐意,刘远高. 胸部CT不同图像算法对人工智能辅助诊断软件肺结节检出效果的影响研究. 中国医学装备. 2023(12): 10-14 .
![]() |