Citation: | CAO Juntao, CHEN Qiqi, HU Ming, XU Ting, TU Jianchun, ZHANG Huan. A Preliminary Analysis of Using the Sinogram-affirmed Iterative Reconstruction Strength Levels based on the Original Data of Low-dose Chest CT to Evaluate Different Types of Small Pulmonary Nodules[J]. CT Theory and Applications, 2021, 30(6): 735-742. DOI: 10.15953/j.1004-4140.2021.30.06.09 |
[1] |
CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA:A Cancer Journal for Clinicians, 2016, 66(2):115-32.
|
[2] |
赫捷, 里霓, 陈万青, 等. 中国肺癌筛查与早诊早治指南(2021, 北京)[J]. 中华肿瘤杂志, 2021, 43(3):243-268.
DOI:10.3760/cma.j.cn112152-20210119-00060. HE J, LI N, CHEN W Q, et al. China guideline for the screening and early detection of lung cancer(2021, Beijing)[J]. Chinese Journal of Oncology, 2021, 43(3):243-268. DOI:10.3760/cma.j.cn112152-20210119-00060. (in Chinese).
|
[3] |
中华医学会呼吸病学分会肺癌学组, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2018年版)[J]. 中华结核和呼吸杂志, 2018, 41(10):763-771.
|
[4] |
MACMAHON H, NAIDICH D P, GOO J M, et al. Guidelines for management of incidental pulmonary nodules detected on CT images:From the fleischner society 2017[J]. Radiology, 2017, 284:228-243.
|
[5] |
de JONG P A, LEINER T, LAMMERS J W, et al. Can low-dose unenhanced chest CT be used for follow-up of pulmonary nodules?[J]. American Journal of Roentgenology, 2012, 199(4):777-780.
|
[6] |
National Pulmonary Screening Trial Research Team, ABERLE D R, ADAMS A M, et al. Reduced pulmonary-cancer mortality with low-dose computed tomographic screening[J]. The New England Journal of Medicine, 2011, 365(5):395-409.
|
[7] |
JIN S, ZHANG B, ZHANG L, et al. Pulmonary nodules assessment in ultra-low-dose CT with iterative reconstruction compared to conventional dose CT[J]. Quantitative Imaging in Medicine and Surgery, 2018, 8(5):480-490.
|
[8] |
王海燕. SAFIRE迭代重建技术在低剂量胸部CT检查中的临床应用研究[D]. 济南:山东大学, 2014. Wang H Y. Application study of Sinogram-affirmed iterative reconstruction on low dose chest CT[D]. Ji'nan:Shandong University, 2014. (in Chinese).
|
[9] |
SWENSEN S J, JETT J R, HARTMAN T E, et al. Pulmonary cancer screening with CT:Mayo Clinic experience[J]. Radiology, 2003, 226(3):756-761.
|
[10] |
YANG W, QIAN F, TENG J, et al. Community-based pulmonary cancer screening with low-dose CT in China:Results of the baseline screening[J]. Lung Cancer, 2018, 117:20-26.
|
[11] |
HOREWEG N, VAN ROSMALEN J, HEUVELMANS M A, et al. Pulmonary cancer probability in patients with CT-detected pulmonary nodules:A prespecified analysis of data from the NELSON trial of low-dose CT screening[J]. The Lancet Oncology, 2014, 15:1332-1341.
|
[12] |
中华医学会放射学分会心胸学组. 低剂量螺旋CT肺癌筛查专家共识[J]. 中华放射学杂志, 2015, (5):328-335.
|
[13] |
赵子健, 李若梅, 苏祝平, 等. LDCT平扫联合ASiR算法在新型冠状病毒肺炎检查中的应用价值[J]. 医疗卫生装备, 2020, 41(7):69-72
, 92. ZHAO Z J, LI R M, SU Z P, et al. Application value of LDCT combined with ASiR algorithm for diagnosing COVID-19[J]. Chinese Medical Equipment Journal, 2020, 41(7):69-72, 92. (in Chinese).
|
[14] |
WILLEMINK M J, NOËL P B. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence[J]. European Radiology, 2019, 29(5):2185-2195.
|
[15] |
WANG G, YU H, DE MAN B. An outlook on X-ray CT research and development[J]. Medical physics, 2008, 35(3):1051-1064.
|
[16] |
STILLER W. Basics of iterative reconstruction methods in computed tomography:A vendorindependent overview[J]. European Journal of Radiology, 2018, 109:147-154.
|
[17] |
AHN H, LEE K H, KIM J, et al. Diameter of the solid component in subsolid nodules on Low-dose unenhanced chest computed tomography:Measurement accuracy for the prediction of invasive component in pulmonary adenocarcinoma[J]. Korean Journal of Radiology, 2018, 19(3):508-515.
|
[18] |
张可名, 王小红, 孙世元, 等. SAFIRE迭代重建技术在肺磨玻璃密度结节低剂量高分辨率CT检查中的应用[J]. 中国老年学杂志, 2016, 36(11):2736-2738.
|
[19] |
MIRONOVA V, BLASBERG J D. Evaluation of ground glass nodules[J]. Current Opinion in Pulmonary Medicine, 2018, 24(4):350-354.
|
[20] |
MILANESE G, SILVA M, FRAUENFELDER T, et al. Comparison of ultra-low dose chest CT scanning protocols for the detection of pulmonary nodules:A phantom study[J]. Tumori Journal, 2019, 105(5):394-403.
|
[21] |
朱熹, 夏巍, 周中柱, 等. 低剂量CT不同重建技术对计算机辅助诊断肺结节的影响[J]. 放射学实践, 2019, 34(11):1255-1259.
ZHU X, XIA W, ZHOU Z Z, et a1. Effect of different reconstruction techniques on computer-aided diagnosis of pulmonary nodules in low-dose CT[J]. Radiology Practice, 2019, 34(11):1255-1259. (in Chinese).
|
[22] |
CHRISTE A, HEVERHAGEN J, OZDOBA C, et al. CT dose and image quality in the last three scanner generations[J]. World Journal of Radiology, 2013, 5(11):421-429.
|
[23] |
GEYER L L, SCHOEPF U J, MEINEL F G, et al. State of the art:Iterative CT reconstruction techniques[J]. Radiology, 2015, 276(2):339-357.
|
[24] |
LAURENT G, VILLANI N, HOSSU G, et al. Full model-based iterative reconstruction (MBIR) in abdominal CT increases objective image quality, but decreases subjective acceptance[J]. European Radiology, 2019, 29(8):4016-4025.
|
[1] | LIU Yuxin, WEI Jiaotong, ZHAO Xiaojie, CHEN Ping, PAN Jinxiao. A Correction Method for Hardening Artifacts in CT Images Based on Integral Invariance[J]. CT Theory and Applications, 2025, 34(4): 571-579. DOI: 10.15953/j.ctta.2025.064 |
[2] | SU Danyang, HOU Ping, ZHANG Haoran, MA Yuanbo, LIU Jinlong, YANG Xiaopeng. Research Progress on Reducing Metal Artifacts in CT Imaging[J]. CT Theory and Applications, 2025, 34(3): 499-505. DOI: 10.15953/j.ctta.2024.023 |
[3] | LIU Xiangcheng, HUANG Xiaoying, WEI Pengyue, WANG Pengchao, GUO Fangkai, BAO Yunfeng. Clinical Research Progress on Deep Learning for Metal Artifact Reduction in CT Images[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.222 |
[4] | WEI Pengyue, HUANG Xiaoying, WU Tong, GUO Fangkai, GUAN Jing, BAO Yunfeng. Effect of denture materials on CT image artifacts: phantom experiment[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.339 |
[5] | LIU Bicheng, YI Xi, ZONG Chunguang, XU Yanwei, LI Liang. Ring-artifact Correction Method for Large-size Object CT Images Based on Gradient Featured Cluster Analysis[J]. CT Theory and Applications, 2024, 33(6): 781-789. DOI: 10.15953/j.ctta.2024.153 |
[6] | ZUO Shunji, FENG Peng, HUANG Pan, YAN Shenghao, HE Peng, WEI Biao. Metal Artifact Reduction Algorithm for CT Images of Rock and Mineral Samples Based on Dual-domain Adaptive Network[J]. CT Theory and Applications, 2022, 31(6): 783-792. DOI: 10.15953/j.ctta.2022.041 |
[7] | ZHAO Qingqing, SUN Xiaoli, LI Xi, WANG Yanwen, LIU Weina, DUAN Yongli, WANG Rengui. Utility of Spectral CT Monochromatic Imaging with Metal Artifacts Reduction (MAR) for the Reduction of Metal Artifacts of Embolization Coil Implants[J]. CT Theory and Applications, 2019, 28(5): 529-539. DOI: 10.15953/j.1004-4140.2019.28.05.02 |
[8] | ZHANG Xue-song, ZHAO Bo-shan. Cupping Artifacts Calibration in CT Image Based on Radon Transform[J]. CT Theory and Applications, 2016, 25(5): 539-546. DOI: 10.15953/j.1004-4140.2016.25.05.05 |
[9] | CHAI Jia-bin, LI Gong-ping, WEI Cun-feng, WEI Long, YU Yang, WANG Qian, LIU Bao-dong. Metal Artifacts Correction Method Research about Liquid Metal Angiography[J]. CT Theory and Applications, 2016, 25(2): 149-157. DOI: 10.15953/j.1004-4140.2016.25.02.04 |
[10] | LI Qing-liang, YAN Bin, SUN Hong-sheng, LI Lei, ZHANG Feng. Review of Metal Artifacts Correction Methods on X-ray Computed Tomography[J]. CT Theory and Applications, 2011, 20(1): 131-140. |