Citation: | ZHOU J W, FENG F. Research progress on CT radiomics of esophageal cancer[J]. CT Theory and Applications, 2022, 31(5): 687-696. DOI: 10.15953/j.ctta.2021.006. (in Chinese). |
[1] |
UHLENHOPP D J, THEN E O, SUNKARA T, et al. Epidemiology of esophageal cancer: Update in global trends, etiology and risk factors[J]. Clinical Journal of Gastroenterol, 2020, 13(6): 1010−1021. doi: 10.1007/s12328-020-01237-x
|
[2] |
SHAO D, VOGTMANN E, LIU A, et al. Microbial characterization of esophageal squamous cell carcinoma and gastric cardia adenocarcinoma from a high-risk region of China[J]. Cancer, 2019, 125(22): 3993−4002. doi: 10.1002/cncr.32403
|
[3] |
OU J, LI R, ZENG R, et al. CT radiomic features for predicting resectability of oesophageal squamous cell carcinoma as given by feature analysis: A case control study[J]. Cancer Imaging, 2019, 19(1): 66. doi: 10.1186/s40644-019-0254-0
|
[4] |
HE H, CHEN N, HOU Y, et al. Trends in the incidence and survival of patients with esophageal cancer: A SEER database analysis[J]. Thoracic Cancer, 2020, 11(5): 1121−1128. doi: 10.1111/1759-7714.13311
|
[5] |
SCHLOTTMANN F, GABER C, STRASSLE P D, et al. Disparities in esophageal cancer: Less treatment, less surgical resection, and poorer survival in disadvantaged patients[J]. Diseases of the Esophagus, 2020, 33(2): 1−9.
|
[6] |
Van TIMMEREN J E, CESTER D, TANADINI-LANG S, et al. Radiomics in medical imaging—“how-to”guide and critical reflection[J]. Insights into Imaging, 2020, 11(1): 91. doi: 10.1186/s13244-020-00887-2
|
[7] |
DING H, WU C, LIAO N, et al. Radiomics in oncology: A 10-year bibliometric analysis[J]. Frontiers in Oncology, 2021, 11: 689802. doi: 10.3389/fonc.2021.689802
|
[8] |
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis[J]. European Journal of Cancer, 2012, 48(4): 441−446. doi: 10.1016/j.ejca.2011.11.036
|
[9] |
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. The Journal of Nuclear Medicine, 2020, 61(4): 488−495. doi: 10.2967/jnumed.118.222893
|
[10] |
ORLHAC F, FROUIN F, NIOCHE C, et al. Validation of a method to compensate multicenter effects affecting CT radiomics[J]. Radiology, 2019, 291(1): 53−59. doi: 10.1148/radiol.2019182023
|
[11] |
BIBAULT J E, XING L, GIRAUD P, et al. Radiomics: A primer for the radiation oncologist[J]. Cancer Radiother, 2020, 24(5): 403−410. doi: 10.1016/j.canrad.2020.01.011
|
[12] |
BERENGUER R, PASTOR-JUAN M D R, CANALES-VÁZQUEZ J, et al. Radiomics of CT features maybe nonreproducible and redundant: Influence of CT acquisition parameters[J]. Radiology, 2018, 288(2): 407−415. doi: 10.1148/radiol.2018172361
|
[13] |
AERTS H J W L. Data science in radiology: A path forward[J]. Clinical Cancer Research, 2018, 24(3): 532−534. doi: 10.1158/1078-0432.CCR-17-2804
|
[14] |
JAYAPRAKASAM V S, YEH R, KU G Y, et al. Role of imaging in esophageal cancer management in 2020: Update for radiologists[J]. American Journal of Roentgenology, 2020, 215(5): 1072−1084. doi: 10.2214/AJR.20.22791
|
[15] |
HUANG F L, YU S J. Esophageal cancer: Risk factors, genetic association, and treatment[J]. Asian Journal of Surgery, 2018, 41(3): 210−215. doi: 10.1016/j.asjsur.2016.10.005
|
[16] |
WU L, WANG C, TAN X, et al. Radiomics approach for preoperative identification of stages Ⅰ-Ⅱ and Ⅲ-Ⅳ of esophageal cancer[J]. Chinese Journal of Cancer Research, 2018, 30(4): 396−405. doi: 10.21147/j.issn.1000-9604.2018.04.02
|
[17] |
朱宗明, 冯银波, 陶广宇, 等. 基于CT图像纹理分析方法对胸段食管癌术前T分期的研究价值[J]. 临床放射学杂志, 2019,38(3): 72−76. DOI: 10.13437/j.cnki.jcr.2019.01.016.
ZHU Z M, FEN Y B, TAO G Y, et al. The value of CT image texture analysis for preoperative T staging of thoracic esophageal cancer[J]. Journal of Clinical Radiology, 2019, 38(3): 72−76. DOI: 10.13437/j.cnki.jcr.2019.01.016. (in Chinese).
|
[18] |
杨耀华, 樊斌. 基于增强CT扫描成像的灰度共生矩阵纹理分析不同T分期食管鳞状细胞癌[J]. 临床放射学杂志, 2017,36(9): 1275−1278. DOI: 10.13437/j.cnki.jcr.2017.09.018.
YANG Y H, FAN B. Assessment of T staging of esophageal squamous cell carcinoma by using GLCM texture analysis: Contrast-enhanced CT texture[J]. Journal of Clinical Radiology, 2017, 36(9): 1275−1278. DOI: 10.13437/j.cnki.jcr.2017.09.018. (in Chinese).
|
[19] |
LIU J, WANG Z, SHAO H, et al. Improving CT detection sensitivity for nodal metastases in oesophageal cancer with combination of smaller size and lymph node axial ratio[J]. European Radiology, 2018, 28(1): 188−195. doi: 10.1007/s00330-017-4935-4
|
[20] |
YUKAWA N, AOYAMA T, TAMAGAWA H, et al. The lymph node ratio is an independent prognostic factor in esophageal cancer patients who receive curative surgery[J]. In Vivo, 2020, 34(4): 2087−2093. doi: 10.21873/invivo.12012
|
[21] |
TAN X, MA Z, YAN L, et al. Radiomics nomogram outperforms size criteria in discriminating lymph node metastasis in resectable esophageal squamous cell carcinoma[J]. European Radiology, 2019, 9(1): 392−400.
|
[22] |
SHEN C, LIU Z, WANG Z, et al. Building CT radiomics based nomogram for preoperative esophageal cancer patients lymph node metastasis prediction[J]. Translational Oncology, 2018, 11(3): 815−824. doi: 10.1016/j.tranon.2018.04.005
|
[23] |
OU J, WU, L, LI R, et al. CT radiomics features to predict lymph node metastasis in advanced esophageal squamous cell carcinoma and to discriminate between regional and non-regional lymph node metastasis: A case control study[J]. Quantitative Imaging in Medicine and Surgery, 2021, 11(2): 628−640. doi: 10.21037/qims-20-241
|
[24] |
WU L, YANG X, CAO W, et al. Multiple level CT radiomics features preoperatively predict lymph node metastasis in esophageal cancer: A multicentre retrospective study[J]. Frontiers in Oncology, 2019, 9: 1548.
|
[25] |
程蕾舒, 吴磊, 陈舒婷, 等. 基于CT影像组学对食管鳞状细胞癌病理分化程度的预测[J]. 中南大学学报(医学版), 2019,44(3): 251−256. DOI: 10.11817/j.issn.1672-7347.2019.03.004.
CHENG L S, WU L, CHEN S T, et al. CT-based radiomics analysis for evaluating the differentiation degree of esophageal squamous carcinoma[J]. Journal of Central South University (Medical Science), 2019, 44(3): 251−256. DOI: 10.11817/j.issn.1672-7347.2019.03.004. (in Chinese).
|
[26] |
WANG Y F, YANG Y L, SUN J W, et al. Development and validation of the predictive model for esophageal squamous cell carcinoma differentiation degree[J]. Frontiers in Genetics, 2020, 11: 595638. doi: 10.3389/fgene.2020.595638
|
[27] |
KAWAHARA D, MURAKAMI Y, TANI S, et al. A prediction model for degree of differentiation for resectable locally advanced esophageal squamous cell carcinoma based on CT images using radiomics andmachine-learning[J]. British Journal of Radiology, 2021, 94: 20210525. doi: 10.1259/bjr.20210525
|
[28] |
RUAN R, CHEN S, TAO Y, et al. A nomogram for predicting lymphovascular invasion in superficial esophageal squamous cell carcinoma[J]. Frontiers in Oncology, 2021, 11: 663802. doi: 10.3389/fonc.2021.663802
|
[29] |
LI Y, YU M, WANG G, et al. Contrast-enhanced CT-based radiomics analysis in predicting lymphovascular invasion in esophageal squamous cell carcinoma[J]. Frontiers in Oncology, 2021, 11: 644165. doi: 10.3389/fonc.2021.644165
|
[30] |
LENG X F, DAIKO H, HAN Y T, et al. Optimal preoperative neoadjuvant therapy for resectable locally advanced esophageal squamous cell carcinoma[J]. Annals of the New York Academy of Sciences, 2020, 1482(1): 213−224. doi: 10.1111/nyas.14508
|
[31] |
YANG Z, HE B, ZHUANG X, et al. CT-based radiomic signatures for prediction of pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy[J]. Journal Radiation Research, 2019, 60(4): 538−545. doi: 10.1093/jrr/rrz027
|
[32] |
HU Y, XIE C, YANG H, et al. Assessment of intratumoral and peritumoral computed tomography radiomics for predicting pathological complete response to neoadjuvant chemoradiation in patients with esophageal squamous cell carcinoma[J]. JAMA Network Open, 2020, 3(9): e2015927. DOI: 10.1001/jamanetworkopen.2020.15927.
|
[33] |
HU Y, XIE C, YANG H, et al. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma[J]. Radiotherapy and Oncology, 2021, 154: 6−13. doi: 10.1016/j.radonc.2020.09.014
|
[34] |
LI N, LUO P, LI C, et al. Analysis of related factors of radiation pneumonia caused by precise radiotherapy of esophageal cancer based on random forest algorithm[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4477−4490. doi: 10.3934/mbe.2021227
|
[35] |
DU F, LIU H, WANG W, et al. Correlation between lung density changes under different dose gradients and radiation pneumonitis−Based on an analysis of computed tomography scans during esophageal cancer radiotherapy[J]. Frontiers in Oncology, 2021, 11: 650764. doi: 10.3389/fonc.2021.650764
|
[36] |
DU F, TANG N, CUI Y, et al. A novel nomogram model based on cone-beam CT radiomics analysis technology for predicting radiation pneumonitis in esophageal cancer patients undergoing radiotherapy[J]. Frontiers in Oncology, 2020, 10: 596013. doi: 10.3389/fonc.2020.596013
|
[37] |
WANG L, GAO Z, LI C, et al. Computed tomography-based delta-radiomics analysis for discriminating radiation pneumonitis in patients with esophageal cancer after radiation therapy[J]. International Journal Radiation Oncology Biology Physics, 2021, 111(2): 443−455. doi: 10.1016/j.ijrobp.2021.04.047
|
[38] |
HAN L, GAO Q L, ZHOU X M, et al. Characterization of CD103+CD8+tissue‑resident T cells in esophageal squamous cell carcinoma: May be tumor reactive and resurrected by anti-PD-1 lockade[J]. Cancer Immunology Immunotherapy, 2020, 69(8): 1493−1504. doi: 10.1007/s00262-020-02562-3
|
[39] |
KUO H Y, GUO J C, HSU C H. Anti-PD-1 immunotherapy in advanced esophageal squamous cell carcinoma: A longawaited breakthrough finally arrives[J]. Journal Formosan Medical Association, 2020, 119(2): 565−568. doi: 10.1016/j.jfma.2019.10.010
|
[40] |
WEN Q, YANG Z, ZHU J, et al. Pretreatment CT-based radiomics signature as a potential imaging biomarker for predicting the expression of PD-L1 and CD8+TILs in ESCC[J]. Onco Targets and Therapy, 2020, 13: 12003−12013. doi: 10.2147/OTT.S261068
|
[41] |
GULLO R L, DAIMIEL I, MORRIS E A, et al. Combining molecular and imaging metrics in cancer: Radiogenomics[J]. Insights into Imaging, 2020, 11(1): 1. doi: 10.1186/s13244-019-0795-6
|
[42] |
XIE C Y, HU Y H, HO J W, et al. Using genomics feature selection method in radiomics pipelineimproves prognostication performance in locally advanced esophageal squamous cell carcinoma−A pilot study[J]. Cancers (Basel), 2021, 13(9): 2145. doi: 10.3390/cancers13092145
|
[43] |
LINDENMANN J, FEDIUK M, FINK-NEUBOECK N, et al. Hazard curves for tumor recurrence and tumor related death following esophagectomy for esophageal cancer[J]. Cancers (Basel), 2020, 12: 2066. doi: 10.3390/cancers12082066
|
[44] |
QIU Q, DUAN J, DENG H, et al. Development and validation of a radiomics nomogram model for predicting postoperative recurrence in patients with esophageal squamous cell cancer who achieved pCR after neoadjuvant chemoradiotherapy followed by surgery[J]. Frontiers in Oncology, 2020, 10: 1398. doi: 10.3389/fonc.2020.01398
|
[45] |
王大伟, 董婷宇, 霍志云, 等. CT增强图像纹理分析对食管癌术后早期复发转移的预测价值[J]. 实用医学杂志, 2020,36(11): 1525−1529. DOI: 10.3969/j.issn.1006-5725.2020.11.023.
WANG D W, DONG T Y, HUO Z Y, et al. Predictive value of texture analysis based on enhanced CT images for early recurrence and metastasis of esophageal squamous cell carcinoma after surgery[J]. The Journal of Practical Medicine, 2020, 36(11): 1525−1529. DOI: 10.3969/j.issn.1006-5725.2020.11.023. (in Chinese).
|
[46] |
FORNACON-WOOD I, MISTRY H, ACKERMANN C J, et al. Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform[J]. European Radiology, 2020, 30(11): 6241−6250. doi: 10.1007/s00330-020-06957-9
|