ISSN 1004-4140
CN 11-3017/P
GUO Q, YAO X F. Progress of Material Decomposition Algorithms in Dual-energy CT Imaging[J]. CT Theory and Applications, 2023, 32(1): 139-146. DOI: 10.15953/j.ctta.2021.067. (in Chinese).
Citation: GUO Q, YAO X F. Progress of Material Decomposition Algorithms in Dual-energy CT Imaging[J]. CT Theory and Applications, 2023, 32(1): 139-146. DOI: 10.15953/j.ctta.2021.067. (in Chinese).

Progress of Material Decomposition Algorithms in Dual-energy CT Imaging

More Information
  • Corresponding author:

    男,上海健康医学院医学影像学院教授、博士生导师,主要从事医学图像处理方面的研究,E-mail:yao6636329@hotmail.com

  • Received Date: December 16, 2021
  • Accepted Date: April 05, 2022
  • Available Online: April 17, 2022
  • Published Date: January 30, 2023
  • Spectral CT can produce basis materials with different X-ray energies. Subsequently, the generated basis materials can be used for qualitative and quantitative evaluation of tissue components and contrast agent distribution. This approach presents a superior ability to separate and identify imaging materials compared to traditional single-energy CT. Dual-energy spectrum technology is one of the most commonly used modes in spectrum CT, which plays an important role in clinical application. In this study, the decomposition methods of a basis material in the image domain of dual-energy spectrum CT were classified into two categories: two-material decomposition and multi-material decomposition. Finally, these methods are summarized and trend of future development is addressed.
  • [1]
    高海英. 能谱CT成像关键参数检测技术研究[D]. 广州: 南方医科大学, 2015.

    GAO H Y. Study on testing techniques of spectral CT imaging key parameters[D]. Guangzhou: Southern Medical University, 2015. (in Chinese).
    [2]
    韩文艳. CT能谱成像的基本原理与临床应用优势[J]. 中国医疗设备, 2015,30(12): 90−91. doi: 10.3969/j.issn.1674-1633.2015.12.025

    HAN W Y. Basic principle and advantages of clinical application of CT energy spectrum imaging[J]. China Medical Devices, 2015, 30(12): 90−91. (in Chinese). doi: 10.3969/j.issn.1674-1633.2015.12.025
    [3]
    ALVAREZ R E, MACOVSKI A. Energy-selective reconstructions in X-ray computerized tomography[J]. Physics in Medicine & Biology, 1976, 21(5): 733−744.
    [4]
    王丽新, 孙丰荣, 仲海, 等. 双能CT成像的数值仿真[J]. 航天医学与医学工程, 2015,28(5): 350−357.

    WANG L X, SUN F R, ZHONG H, et al. Numerical simulation of dual-energy CT imaging[J]. Space Medicine & Medical Engineering, 2015, 28(5): 350−357. (in Chinese).
    [5]
    MAASS C, BAER M, KACHELRIESS M. Image-based dual energy CT using optimized precorrection functions: A practical new approach of material decomposition in image domain[J]. Medical Physics, 2009, 36(8): 3818−3829. doi: 10.1118/1.3157235
    [6]
    贺芳芳. 能谱CT基物质分解技术应用研究[D]. 济南: 山东大学, 2020.

    HE F F. Application research on basis material decomposition of spectral CT[D]. Jinan: Shandong University, 2020. (in Chinese).
    [7]
    MENDONÇA P R S, BHOTIKA R, MADDAH M, et al. Multi-material decomposition of spectral CT images[C]//Medical Imaging 2010: Physics of Medical Imaging. SPIE, 2010, 7622: 633-641.
    [8]
    周正东, 章栩苓, 辛润超, 等. 基于MAP-EM算法的双能CT直接迭代基材料分解方法[J]. 东南大学学报(自然科学版), 2020,50(5): 935−941. doi: 10.3969/j.issn.1001-0505.2020.05.020

    ZHOU Z D, ZHANG X L, XIN R C, et al. Direct iterative basis material decomposition method for dual-energy CT based on MAP-EM algorithm[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(5): 935−941. (in Chinese). doi: 10.3969/j.issn.1001-0505.2020.05.020
    [9]
    孙英博, 孔慧华, 张雁霞. 基于投影域分解的多能谱CT造影剂物质识别研究[J]. 中北大学学报 (自然科学版), 2019,40(2): 167−172.

    SUN Y B, KONG H H, ZHANG Y X. Multi-energy spectral CT contrast agent material recognition based on projection domain decomposition[J]. Journal of North University of China (Natural Science Edition), 2019, 40(2): 167−172. (in Chinese).
    [10]
    LI Z, RAVISHANKAR S, LONG Y, et al. Learned mixed material models for efficient clustering based dual-energy CT image decomposition[C]//2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2018: 529-533.
    [11]
    李磊. 双能CT图像重建算法研究[D]. 郑州: 解放军信息工程大学, 2016.

    LI L. Research on image reconstruction algorithms of dual energy computed tomography[D]. Zhengzhou: Information Engineering University, 2016. (in Chinese).
    [12]
    MCCOLLOUGH C H, SCHMIDT B, LIU X, et al. Dual-energy algorithms and postprocessing techniques[M]//Dual energy CT in clinical practice. Springer, Berlin, Heidelberg, 2011: 43-51.
    [13]
    RUTHERFORD R, PULLAN B, ISHERWOOD I. X-ray energies for effective atomic number determination[J]. Neuroradiology, 1976, 11(1): 23−28. doi: 10.1007/BF00327254
    [14]
    NISHIMURA D G, MACOVSKI A, BRODY W R. Noise reduction methods for hybrid subtraction[J]. Medical Physics, 1984, 11(3): 259−265. doi: 10.1118/1.595501
    [15]
    JOHNS P C, YAFFE M J. Theoretical optimization of dual-energy X-ray imaging with application to mammography[J]. Medical Physics, 1985, 12(3): 289−296. doi: 10.1118/1.595766
    [16]
    KALENDER W A, KLOTZ E, KOSTARIDOU L. An algorithm for noise suppression in dual energy CT material density images[J]. IEEE Transactions on Medical Imaging, 1988, 7(3): 218−224. doi: 10.1109/42.7785
    [17]
    HINSHAW D A, DOBBINS III J T. Recent progress in noise reduction and scatter correction in dual-energy imaging[C]//Medical Imaging 1995: Physics of Medical Imaging, SPIE, 1995, 2432: 134-142.
    [18]
    WARP R J, DOBBINS J T. Quantitative evaluation of noise reduction strategies in dual-energy imaging[J]. Medical Physics, 2003, 30(2): 190−198. doi: 10.1118/1.1538232
    [19]
    DONG X, NIU T, ZHU L. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization[J]. Medical Physics, 2014, 41(5): 051909(1-9).
    [20]
    ZHAO W, NIU T, XING L, et al. Using edge-preserving algorithm with non-local mean for significantly improved image-domain material decomposition in dual-energy CT[J]. Physics in Medicine & Biology, 2016, 61(3): 1332−1351.
    [21]
    陈佩君, 冯鹏, 伍伟文, 等. 基于图像总变分和张量字典的多能谱CT材料识别研究[J]. 光学学报, 2018, 38(11): 1111002(1-8).

    CHEN P J, FENG P, WU W W, et al. Material discrimination by multi-spectral CT based on lmage total variation and tensor dictionary[J]. Acta Optica Sinica 2018, 38(11): 1111002(1-8). (in Chinese).
    [22]
    DENG G, CHEN M, HE P, et al. The experimental study on geometric calibration and material discrimination for in Vivo dual-energy CT imaging[J]. Biomedical Research International, 2019, 2019: 7614589.
    [23]
    NIU T, DONG X, PETRONGOLO M, et al. Iterative image-domain decomposition for dual-energy CT[J]. Medical Physics, 2014, 41(4): 041901(1−10).
    [24]
    TANG S, YANG M, HU X, et al. Multiscale penalized weighted least-squares image-domain decomposition for dual-energy CT[C]//2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2015: 1-6.
    [25]
    LI Z, RAVISHANKAR S, LONG Y, et al. DECT-MULTRA: Dual-energy CT image decomposition with learned mixed material models and efficient clustering[J]. IEEE Transactions on Medical Imaging, 2020, 39(4): 1223−1234. doi: 10.1109/TMI.2019.2946177
    [26]
    王冲旭, 陈平, 潘晋孝, 等. 基于迭代残差网络的双能CT图像材料分解研究[J]. CT理论与应用研究, 2022,31(1): 47−54. DOI: 10.15953/j.1004-4140.2022.31.01.05.

    WANG C X, CHEN P, PAN J X, et al. Research on material decomposition of dual-energy CT image based on iterative residual network[J]. CT Theory and Applications, 2022, 31(1): 47−54. DOI: 10.15953/j.1004-4140.2022.31.01.05. (in Chinese).
    [27]
    XU Y, YAN B, ZHANG J, et al. Image decomposition algorithm for dual-energy computed tomography via fully convolutional network[J]. Computational and Mathematical Methods in Medicine, 2018, 2018(1): 2527516.
    [28]
    朱冬亮, 文奕, 陶欣. 深度学习在生物医学领域的应用进展述评[J]. 世界科技研究与发展, 2020,42(5): 510−519.

    ZHU D L, WEN Y, TAO X. A Review of the application progress of deep learning in biomedical field[J]. World Sci-Tech R & D, 2020, 42(5): 510−519. (in Chinese).
    [29]
    KAWAHARA D, SAITO A, OZAWA S, et al. Image synthesis with deep convolutional generative adversarial networks for material decomposition in dual-energy CT from a kilovoltage CT[J]. Computers in Biology and Medicine, 2021, 128: 104111. doi: 10.1016/j.compbiomed.2020.104111
    [30]
    LYU T, ZHAO W, ZHU Y, et al. Estimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network[J]. Medical Image Analysis, 2021, 70: 102001. doi: 10.1016/j.media.2021.102001
    [31]
    CLARK D P, HOLBROOK M, BADEA C T. Multi-energy CT decomposition using convolutional neural networks[C]//Medical Imaging 2018: Physics of Medical Imaging. International Society for Optics and Photonics, 2018, 10573: 415-423.
    [32]
    ZHANG W, ZHANG H, WANG L, et al. Image domain dual material decomposition for dual-energy CT using butterfly network[J]. Medical Physics, 2019, 46(5): 2037−2051. doi: 10.1002/mp.13489
    [33]
    SHI Z, LI H, CAO Q, et al. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks[J]. Medical Physics, 2021, 48(6): 2891−2905. doi: 10.1002/mp.14828
    [34]
    郭志鹏. Micro-CT重建图像质量增强的方法研究[D]. 西安: 西安电子科技大学, 2017.

    GUO Z P. Research on image quality enhancement method in micro-CT reconstruction[D]. Xi'an: Xidian University, 2017. (in Chinese).
    [35]
    LIU X, YU L, PRIMAK A N, et al. Quantitative imaging of element composition and mass fraction using dual-energy CT: Three-material decomposition[J]. Medical Physics, 2009, 36(5): 1602−1609. doi: 10.1118/1.3097632
    [36]
    MENDONÇA P R, LAMB P, SAHANI D V. A flexible method for multi-material decomposition of dual-energy CT images[J]. IEEE Transactions on Medical Imaging, 2014, 33(1): 99−116. doi: 10.1109/TMI.2013.2281719
    [37]
    JIANG Y, XUE Y, LYU Q, et al. Noise suppression in image-domain multi-material decomposition for dual-energy CT[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(2): 523−535. doi: 10.1109/TBME.2019.2916907
    [38]
    LEE H, KIM H J, LEE D, et al. Improvement with the multi-material decomposition framework in dual-energy computed tomography: A phantom study[J]. Journal of the Korean Physical Society, 2020, 77(6): 515−523. doi: 10.3938/jkps.77.515
    [39]
    降俊汝, 余海军, 龚长城, 等. 基于双能CT图像域的DL-RTV多材料分解研究[J]. 光学学报, 2020,40(21): 2111004(1−12).

    JIANG J R, YU H J, GONG C C, et al. Image-domain multimaterial decomposition for dual-energy CT based on dictionary learning and relative total variation[J]. Acta Optica Sinica, 2020, 40(21): 2111004(1−12). (in Chinese).
    [40]
    LONG Y, FESSLER J A. Multi-material decomposition using statistical image reconstruction for spectral CT[J]. IEEE Transactions on Medical Imaging, 2014, 33(8): 1614−1626. doi: 10.1109/TMI.2014.2320284
    [41]
    XUE Y, RUAN R, HU X, et al. Statistical image-domain multimaterial decomposition for dual-energy CT[J]. Medical Physics, 2017, 44(3): 886−901. doi: 10.1002/mp.12096
    [42]
    DING Q, NIU T, ZHANG X, et al. Image-domain multimaterial decomposition for dual-energy CT based on prior information of material images[J]. Medical Physics, 2018, 45(8): 3614−3626. doi: 10.1002/mp.13001
    [43]
    PATINO M, PROCHOWSKI A, AGRAWAL M D, et al. Material separation using dual-energy CT: Current and emerging applications[J]. Radiographics, 2016, 36(4): 1087−1105. doi: 10.1148/rg.2016150220
  • Related Articles

    [1]CUI Can, WEN Qingxiang, LIU Ni, LI Min, LI Junqiu, LIU Junlian, HUO Jianwei. Feasibility of opportunistic osteoporosis screening using an artificial intelligence-based bone density measurement on chest CT scans[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.289
    [2]MENG Xianghua, CUI Xuefeng, CHEN Yingmin, MA Guangjun, WANG Yanfen, MA Li, ZHAI Zechuan, SHEN Chaona. Exploration of the Application Value of Dual Energy CT in the Diagnosis and Phase IIA Display of Talar Osteochondrial Injury[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.220
    [3]SHANG Xiaoqing, CHEN Yingmin, LIU Xiang, GAO Huimin, JIA Xiuchuan, BAO Yunfeng. The Value of Dual-energy CT Virtual Calcium Subtraction Technique in the Diagnosis of Fresh Sacrococcygeal Fractures in the “Sitting Position”[J]. CT Theory and Applications, 2024, 33(6): 725-732. DOI: 10.15953/j.ctta.2024.095
    [4]WANG Mengmeng, ZHANG Lei, ZHOU Fengyun, CHENG Xiaoguang. Comparative Study of the Accuracies and Efficiencies of Dual-layer Spectral CT, QCT, and DXA for Osteoporosis Diagnosis[J]. CT Theory and Applications, 2024, 33(6): 717-724. DOI: 10.15953/j.ctta.2024.086
    [5]LI Yongjun, ZHAO Junlu, ZHANG Jiakai, REN Qingyun, LIU Zhai. L1 Vertebral CT Attenuation Value in Abdominal CT Scanning for the Opportunistic Screening of Osteoporosis[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.134
    [6]LIU Ping, LI Miao, ZHANG Yanqi, MOU Xiaoshuang, ZHANG Youfeng, XI Shouzhi, ZHANG Baoqiang. Research of Bone Mineral Density Energy Spectrum Detection Technology Based on High-compact Support Moving Least Square Method[J]. CT Theory and Applications, 2021, 30(5): 555-565. DOI: 10.15953/j.1004-4140.2021.30.05.03
    [7]CHENG Haiping, PENG Zhoufeng, LI Liang, CENG Feifei, CHA Yunfei. Study on the Correlation between the Volume of Epicardial Adipose Tissue and Lumbar Bone Mineral Density[J]. CT Theory and Applications, 2021, 30(1): 131-138. DOI: 10.15953/j.1004-4140.2021.30.01.14
    [8]JIAO Yan, ZHANG Dan, LI Gaoyang, LI Guiping, WU Weina. Study on the Relationship between Cartilage Injury of Knee Tibiofemoral Joint and Joint Axis Angle[J]. CT Theory and Applications, 2019, 28(1): 53-60. DOI: 10.15953/j.1004-4140.2019.28.01.06
    [9]LI Chan, LI Liang, CHEN Zhi-qiang. Review of Developments of the Dual Energy X-ray Absorptiometry Techniques[J]. CT Theory and Applications, 2014, 23(5): 717-730.
    [10]HUANG Kai-yin. The Application of CT and X-ray Examination on Traumatic Osteoporosis[J]. CT Theory and Applications, 2002, 11(2): 32-35.
  • Cited by

    Periodical cited type(1)

    1. 许鹏君,许晨思,孙钢,张翼,赵苏莉,冯亚斌,刘锴. 膝骨性关节炎关节状态与西安大略和麦克马斯特大学骨关节炎指数评分水平的定量CT研究. 创伤与急危重病医学. 2025(02): 145-147+160 .

    Other cited types(0)

Catalog

    Article views (2791) PDF downloads (247) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return