Citation: | ZHU Y Z, LV Q W, GUAN Y, et al. Low-dose CT reconstruction based on deep energy models[J]. CT Theory and Applications, 2022, 31(6): 709-720. DOI: 10.15953/j.ctta.2021.077. (in Chinese). |
[1] |
BRENNER D J, HALL E J. Computed tomography: An increasing source of radiation exposure[J]. New England Journal of Medicine, 2007, 357(22): 2277−2284. doi: 10.1056/NEJMra072149
|
[2] |
KALRA M K, MAHER M M, TOTH T L, et al. Strategies for CT radiation dose optimization[J]. Radiology, 2004, 230(3): 619−628. doi: 10.1148/radiol.2303021726
|
[3] |
韩泽芳, 上官宏, 张雄, 等. 基于深度学习的低剂量CT成像算法研究进展[J]. CT理论与应用研究, 2022, 31(1): 118-136. DOI: 10.15953/j.1004-4140.2022.31.01.14.
HAN Z F, SHANGGUAN H, ZHANG X, et al. Research progress of low-dose CT imaging algorithm based on deep learning[J]. CT Theory and Applications, 2022, 31(1): 118-136. DOI: 10.15953/j.1004-4140.2022.31.01.14. (in Chinese).
|
[4] |
TIAN Z, JIA X, YUAN K, et al. Low-dose CT reconstruction via edge-preserving total variation regularization[J]. Physics in Medicine & Biology, 2011, 56(18): 5949.
|
[5] |
MA J, LIANG Z, FAN Y, et al. A study on CT sinogram statistical distribution by information divergence theory[C]//2011 IEEE Nuclear Science Symposium Conference Record. IEEE, 2011: 3191-3196.
|
[6] |
ELBAKRI I A, FESSLER J A. Statistical image reconstruction for polyenergetic X-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 2002, 21(2): 89−99. doi: 10.1109/42.993128
|
[7] |
ZHANG K, ZUO W, CHEN Y, et al. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142−3155. doi: 10.1109/TIP.2017.2662206
|
[8] |
LEFKIMMIATIS S. Universal denoising networks: A novel CNN architecture for image denoising[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3204-3213.
|
[9] |
ZHANG K, ZUO W, ZHANG L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608−4622. doi: 10.1109/TIP.2018.2839891
|
[10] |
CHEN H, ZHANG Y, ZHANG W, et al. Low-dose CT via convolutional neural network[J]. Biomedical Optics Express, 2017, 8(2): 679−694. doi: 10.1364/BOE.8.000679
|
[11] |
CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524−2535. doi: 10.1109/TMI.2017.2715284
|
[12] |
WÜRFL T, GHESU F C, CHRISTLEIN V, et al. Deep learning computed tomography[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2016: 432-440.
|
[13] |
CHENG L, AHN S, ROSS S G, et al. Accelerated iterative image reconstruction using a deep learning based leapfrogging strategy[C]//International Conference on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 2017: 715-720.
|
[14] |
HAN Y S, YOO J, YE J C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis[J]. arXiv preprint arXiv: 1611.06391, 2016.
|
[15] |
JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509−4522. doi: 10.1109/TIP.2017.2713099
|
[16] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015: 234-241.
|
[17] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[18] |
BAGUER D O, LEUSCHNER J, SCHMIDT M. Computed tomography reconstruction using deep image prior and learned reconstruction methods[J]. Inverse Problems, 2020, 36(9): 094004. doi: 10.1088/1361-6420/aba415
|
[19] |
KINGMA D P, WELLING M. Auto-encoding variational bayes[J]. arXiv preprint arXiv: 1312.6114, 2013.
|
[20] |
DINH L, KRUEGER D, BENGIO Y. Nice: Non-linear independent components estimation[J]. arXiv preprint arXiv: 1410.8516, 2014.
|
[21] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014: 27.
|
[22] |
NOWOZIN S, CSEKE B, TOMIOKA R. F-GAN: Training generative neural samplers using variational divergence minimization[C]//Proceedings of the 30 th International Conference on Neural Information Processing Systems, 2016: 271-279.
|
[23] |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]// International Conference on Machine Learning. PMLR, 2017: 214-223.
|
[24] |
蔡宁, 王世杰, 陈璐杰, 等. 基于渐进式网络处理的低剂量Micro-CT成像方法[J]. CT理论与应用研究, 2020,29(4): 435−446. DOI: 10.15953/j.1004-4140.2020.29.04.06.
CAI N, WANG S J, CHEN L J. Low-dose Micro-CT imaging method based on progressive network processing[J]. CT Theory and Applications, 2020, 29(4): 435−446. DOI: 10.15953/j.1004-4140.2020.29.04.06. (in Chinese).
|
[25] |
NIU C, LI M Z, FAN F L, et al. Suppression of correlated noises with similarity-based unsupervised deep learning[J]. arXiv: 2011.03384.
|
[26] |
WU D, KIM K, E L FAKHRI G, et al. Iterative low-dose CT reconstruction with priors trained by artificial neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2479−2486. doi: 10.1109/TMI.2017.2753138
|
[27] |
ZHANG F Q, ZHANG M H, QIN B J, et al. REDAEP: Robust and enhanced denoising autoencoding prior for sparse-view CT reconstruction[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(1): 108−119. doi: 10.1109/TRPMS.2020.2989634
|
[28] |
LECUN Y, CHOPRA S, HADSELL R, et al. A tutorial on energy-based learning[M]. Predicting Structured Data, 2006: 191-241.
|
[29] |
DU Y, MORDATCH I. Implicit generation and modeling with energy based models[J]. Advances in Neural Information Processing Systems, 2019: 32.
|
[30] |
NIJKAMP E, HILL M, ZHU S C, et al. Learning non-convergent non-persistent short-run MCMC toward energy-based model[J]. arXiv preprint arXiv: 1904.09770, 2019.
|
[31] |
WELLING M, TEH Y W, Bayesian learning via stochastic gradient Langevin dynamics[C]// International Conference on International Conference on Machine Learning. Omnipress, 2011.
|
[32] |
ERDOGAN H, FESSLER J A. Monotonic algorithms for transmission tomography[C]//5th IEEE EMBS International Summer School on Biomedical Imaging, 2002.
|
[33] |
DEVOLDER O, GLINEUR F, NESTEROV Y. First-order methods of smooth convex optimization with inexact oracle[J]. Mathematical Programming, 2014, 146(1): 37−75.
|
[34] |
YIN X, ZHAO Q, LIU J, et al. Domain progressive 3D residual convolution network to improve low-dose CT imaging[J]. IEEE transactions on medical imaging, 2019, 38(12): 2903−2913. doi: 10.1109/TMI.2019.2917258
|
[1] | TANG Haoqi, YANG Jun, CHEN Rongchang. A Method for Detecting Foreign Objects in Pastries Based on Deep Learning[J]. CT Theory and Applications, 2025, 34(4): 560-570. DOI: 10.15953/j.ctta.2025.066 |
[2] | CHEN Qian, YU Baodi, QIN Yanwei, WANG Sunyang, SU Xiaohui, JIN Xin, MENG Fanyong. Deep-learning Enhanced CT Reconstruction Algorithm for Multiphase-flow Measurement[J]. CT Theory and Applications, 2025, 34(3): 419-426. DOI: 10.15953/j.ctta.2025.097 |
[3] | SUN Yufei, ZHONG Zhaohui, LI Xiangming, ZHOU Wanbo, XU Chensi, DENG Miao, ZHANG Lixin. Contrast Study of Low Tube Current Combined with Deep Learning Algorithms in Paranasal Sinus CT Imaging[J]. CT Theory and Applications, 2025, 34(3): 351-358. DOI: 10.15953/j.ctta.2024.288 |
[4] | WANG Qin, YAN Weijie, YUAN Yuan, TANG Hehan, DENG Liping. Study of a Deep Learning Reconstruction Algorithm for Displaying Small- and Medium-sized Blood Vessels in Upper Abdominal Energy Spectrum CT[J]. CT Theory and Applications, 2025, 34(1): 37-43. DOI: 10.15953/j.ctta.2024.168 |
[5] | Du Congcong, Qiao Zhiwei. EPRI Sparse-Reconstruction Method Based on Deep Learning[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.047 |
[6] | LI Zhen, WANG Ziwei, YU Guangfu, LIAO Kai. Deep Learning Reconstruction Algorithm Combined with “Double Low” Dose for Liver CT Enhancement[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.306 |
[7] | LI Ling, ZHANG Mingxia, SUN Ying, DUAN Shuhong, GUO Jia, DU Changyue, LIU Mengke, ZHANG Yimeng, SUN Lei, HUO Meng, WANG Rengui. Imaging Study of COVID-19 Patients with Diabetes Mellitus by Computed Tomograpgh Quantitative Indicators Based on Deep Learning[J]. CT Theory and Applications, 2023, 32(3): 373-379. DOI: 10.15953/j.ctta.2023.020 |
[8] | WEN Deying, YANG Jieyin, WANG Qin, LI Zhen, WANG Hanxiao, WANG Aijie, DENG Qiao, TANG Lu, WU Xi, YAO Jin, LU Chunyan, SUN Jiayu. Application of Deep Learning Reconstruction Algorithm in Upper Abdomen CT[J]. CT Theory and Applications, 2022, 31(3): 329-336. DOI: 10.15953/j.ctta.2021.005 |
[9] | HAN Zefang, SHANGGUAN Hong, ZHANG Xiong, HAN Xinglong, GUI Zhiguo, CUI Xueying, ZHANG Pengcheng. Advances in Research on Low-dose CT Imaging Algorithm Based on Deep Learning[J]. CT Theory and Applications, 2022, 31(1): 117-134. DOI: 10.15953/j.1004-4140.2022.31.01.14 |
[10] | ZHOU Li-ping, SUN Yi, CHENG Kai, YU Jian-qiao. Deep Learning Based Beam Hardening Artifact Reduction in Industrial X-ray CT[J]. CT Theory and Applications, 2018, 27(2): 227-240. DOI: 10.15953/j.1004-4140.2018.27.02.11 |
1. |
吴凡,刘进,张意,陈阳,陆志凯. 面向CT成像的深度重建算法研究进展. 中国体视学与图像分析. 2022(04): 387-404 .
![]() |