Citation: | GUO Y D. Seismic Data Reconstruction Based on the POCS Method in the Curvelet Domain with Prior Information[J]. CT Theory and Applications, 2024, 33(2): 149-158. DOI: 10.15953/j.ctta.2023.078. (in Chinese). |
Due to limited acquisition conditions in the field, the seismic data is usually incomplete, which affects the following seismic data processing and seismic interpretation. To solve this problem, the seismic data needs reconstruction. The projection onto convex sets (POCS) method utilizes the sparse characteristics of seismic waveforms in the Curvet domain to reconstruct high signal-to-noise ratio seismic data. This iterative algorithm is stable and has a fast convergence speed. However, during the recovery of seismic data, because the influence of direct waves and the blank area in the upper part of the shot gathers as the iteration progresses, the noise interference in the reconstructed data becomes increasingly severe, resulting in a low signal-to-noise ratio of the final recovered seismic data. Based on the implementation of the POCS iterative threshold algorithm, this article introduces the idea of Prior information constraints to optimize the original algorithm. By first performing coordinate mapping for shot gathers interpolation and then using it as a prior information constraint for interpolation, the impact of noise attenuation is dramatic. Finally, the synthesized seismic shot records were tested with actual shot gathers, and the results illustrated that the new method proposed in this paper can significantly improve the signal-to-noise ratio of reconstructed seismic data and enhance the continuity of seismic wave field events.
[1] |
李振春, 张军华. 地震数据处理方法[M]. 东营: 石油大学出版社, 2004.
LI Z C, ZHANG J H. Seismic data processing method[M]. Dongying: Petroleum University Press, 2004. (in Chinese).
|
[2] |
周亚同, 滕琳琳, 李玲玲. 基于高阶扩展快速行进法的缺失地震数据重构[J]. 石油地球物理勘探, 2015, 50(5): 873−880, 803.
ZHOU Y T, TENG L L, LI L L. Seismic data reconstruction with the high-order expansion fast marching method[J]. Oil Geophysical Prospecting, 2015, 50(5): 873−880, 803. (in Chinese).
|
[3] |
李振春. 地震偏移成像技术研究现状与发展趋势[J]. 石油地球物理勘探, 2014, 49(1): 1−21. DOI: 10.13810/j.cnki.issn.1000-7210.2014.01.001.
LI Z C. Research status and development trends for seismic migration technology[J]. Oil Geophysical Prospecting, 2014, 49(1): 1−21. DOI: 10.13810/j.cnki.issn.1000-7210.2014.01.001. (in Chinese).
|
[4] |
LI C, HUANG J P, LI Z C, et al. Regularized least-squares migration of simultaneous-source seismic data with adaptive singular spectrum analysis[J]. Petroleum Science, 2017, 14(1): 61−74. DOI:10.1007/ s12182-016-0134-1.
|
[5] |
唐刚. 基于压缩感知和稀疏表示的地震数据重构与去噪[D]. 北京: 清华大学, 2010.
TANG G. Seismic data reconstruction and denoising based on compressive sensing and sparse representation[D]. Beijing: Tsinghua University, 2010. (in Chinese).
|
[6] |
李思翰, 刘洪林. 基于组合形态分量分析算法的含噪地震数据重构[J]. 地球物理学进展, 2021, 36(4): 1547−1553. DOI: 10.6038/pg2021DD0364.
LI S H, LIU H L. Reconstruction of noisy seismic data based on combined morphological component analysis algorithm[J]. Progress in Geophysics, 2021, 36(4): 1547−1553. DOI: 10.6038/pg2021DD0364. (in Chinese).
|
[7] |
SPITZ S. Seismic trace interpolation in the FX domain[J]. Geophysics, 1991, 56(6): 785−794. DOI: 10.1190/1.1443096.
|
[8] |
GÜLÜNAY N. Seismic trace interpolation in the Fourier transform domain[J]. Geophysics, 2003, 68(1): 355−369. DOI: 10.1190/1.1543221.
|
[9] |
ZWARTJES P, GISOLF A. Fourier reconstruction with sparse inversion[J]. Geophysical Prospecting, 2007, 55(2): 199−221. DOI: 10.1111/j.1365-2478.2006.00580.x.
|
[10] |
KABIR M M, VERSCHUUR D J. Restoration of missing offsets by parabolic Radon transform[J]. Geophysical Prospecting, 1995, 43(3): 347−368. DOI: 10.1111/j.1365-2478.1995.tb00257.x.
|
[11] |
STOLT R H. Seismic data mapping and reconstruction[J]. Geophysics, 2002, 67(3): 890−908. DOI:10.1190/ 1.1484532.
|
[12] |
RONEN J. Wave-equation trace interpolation[J]. Geophysics, 1987, 52(7): 973−984. DOI: 10.1190/1.1442366.
|
[13] |
白兰淑, 刘伊克, 卢回忆, 等. 基于压缩感知的Curvelet域联合迭代地震数据重构[J]. 地球物理学报, 2014, 57(9): 2937−2945. DOI: 10.6038/cjg20140919.
BAI L S, LIU Y K, LU H Y, et al. Curvelet-domain joint iterative seismic data reconstruction based on compressed sensing[J]. Chinese Journal of Geophysics, 2014, 57(9): 2937−2945. DOI:10.6038/cjg2014 0919. (in Chinese).
|
[14] |
霍志周, 熊登, 张剑锋. 地震数据重构方法综述[J]. 地球物理学进展, 2013, 28(4): 1749−1756. DOI:10.6038/ pg20130415.
ZHAI Z Z, XIONG D, ZHANG J F. The overview of seismic data reconstruction methods[J]. Progress in Geophysics, 2013, 28(4): 1749−1756. DOI: 10.6038/pg20130415. (in Chinese).
|
[15] |
王姣, 李振春, 王德营. 基于CEEMD的地震数据小波阈值去噪方法研究[J]. 石油物探, 2014, 53(2): 164−172. DOI: 10.3969/j.issn.1000-1441.2014.02.006.
WANG J, LI Z C, WANG D Y. A method for wavelet threshold denoising of seismic data based on CEEMD[J]. Geophysical Prospecting for Petroleum, 2014, 53(2): 164−172. DOI: 10.3969/j.issn.1000-1441.2014.02.006. (in Chinese).
|
[16] |
CANDÈS E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21−30. DOI: 10.1109/MSP.2007.914731.
|
[17] |
刘伟, 曹思远, 崔震. 基于压缩感知和TV准则约束的地震资料去噪[J]. 石油物探, 2015, 54(2): 180−187. DOI: 10.3969/j.issn.1000-1441.2015.02.009.
LIU W, CAO S Y, CUI Z. Seismic data reconstruction based on sparse constraint in the shearlet domain[J]. Geophysical Prospecting for Petroleum, 2015, 54(2): 180−187. DOI: 10.3969/j.issn.1000-1441.2015.02.009. (in Chinese).
|
[18] |
曹静杰, 王彦飞, 杨长春. 地震数据压缩重构的正则化与零范数稀疏最优化方法[J]. 地球物理学报, 2012, 55(2): 596-607. DOI: 10.6038/j.issn.0001-5733.2012.02.001.
CAO J J, WANG Y F, YANG C C. Seismic data Restoration based on compressive sensing using regularization and zero-norm sparse optimization[J]. Chinese Journal of Geophysics, 2012, 55(2): 239−251. DOI: 10.6038/j.issn.0001-5733.2012.02.001. (in Chinese).
|
[19] |
周亚同, 王丽莉, 蒲青山. 压缩感知框架下基于K-奇异值分解字典学习的地震数据重构[J]. 石油地球物理勘探, 2014, 49(4): 652−660.
ZHOU Y T, WANG L L, PU Q S. Seismic data reconstruction based on K-SVD dictionary learning under compressive sensing framework[J]. Oil Geophysical Prospecting, 2014, 49(4): 652−660. (in Chinese).
|
[20] |
BRÈGMAN L M. The method of successive projection for finding a common point of convex sets[J]. Doklady Akademii Nauk Sssr, 1965, 6(3): 487−490.
|
[21] |
ABMA R, KABIR N. 3D interpolation of irregular data with a POCS algorithm[J]. Geophysics, 2006, 71(6): E91−E97. DOI: 10.1190/1.2356088.
|
[22] |
赵虎, 赵子涵, 陈伟, 等. 基于Bregman迭代的不同阈值模型地震数据重构方法分析[J]. 地球物理学进展, 2023, 38(1): 409−418. DOI: 10.6038/pg2023FF0310.
ZHAO H, ZHAO Z H, CHEN W, et al. Analysis of seismic data reconstruction methods for different threshold models based on Bregman iteration[J]. Progress in Geophysics, 2023, 38(1): 409−418. DOI: 10.6038/pg2023FF0310. (in Chinese).
|
[23] |
郭萌, 张会星, 刘明珠. 基于双重Bregman迭代的地震数据重构与去噪[J]. 石油物探, 2020, 59(5): 804-814.
GUO M, ZHANG H X, LIU M Z. Seismic data reconstruction and denoising based on dual Bregman iteration[J]. Geophysical Prospecting for Petroleum. 2020, 59(5): 804-814. (in Chinese).
|
[24] |
GAO J J, CHEN X H, LI J Y, et al. Irregular seismic data reconstruction based on exponential threshold model of POCS method[J]. Applied Geophysics, 2010, 7(3): 229−238. DOI: 10.1007/s11770-010-0246-5.
|
[25] |
GAO J, STANTON A, NAGHIZADEH M, et al. Convergence improvement and noise attenuation considerations for beyond alias projection onto convex sets reconstruction[J]. Geophysical Prospecting, 2013, 61(S1): 138−151.
|
[26] |
刘国昌, 陈小宏, 郭志峰, 等. 基于Curvelet变换的缺失地震数据插值方法[J]. 石油地球物理勘探, 2011, 46(2): 237−246. DOI: 10.13810/j.cnki.issn.1000-7210.2011.02.014.
LIU G C, CHEN X H, GUO Z F, et al. Missing seismic data rebuilding by interpolation based on curvelet transform[J]. Oil Geophysical Prospecting, 2011, 46(2): 237−246. DOI: 10.13810/j.cnki.issn.1000-7210.2011.02.014. (in Chinese).
|
[27] |
YANG P, GAO J, CHEN W. Curvelet-based POCS interpolation of nonuniformly sampled seismic records[J]. Journal of Applied Geophysics, 2012, 79: 90−99. DOI: 10.1016/j.jappgeo.2011.12.004.
|
[28] |
WANG B, WU R S, CHEN X, et al. Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform[J]. Geophysical Journal International, 2015, 201(2): 1182−1194. DOI: 10.1093/gji/ggv072.
|
[29] |
王本锋, 陈小宏, 李景叶, 等. POCS联合改进的Jitter采样理论曲波域地震数据重构[J]. 石油地球物理勘探, 2015, 50(1): 20−28.
WANG B F, Chen X H, Li J Y, et al. Seismic data reconstruction based on POCS and improved Jittered sampling in the curvelet domain[J]. Oil Geophysical Prospecting, 2015, 50(1): 20−28. (in Chinese).
|
[30] |
张华, 陈小宏. 基于Jitter采样和曲波变换的三维地震数据重构[J]. 地球物理学报, 2013, 56(5): 1637−1649. DOI: 10.6038/cjg20130521.
ZHANG H, CHEN X H. Seismic data reconstruction based on Jittered sampling and curvelet transform[J]. Chinese Journal of Geophysics, 2013, 56(5): 1637−1649. DOI: 10.6038/cjg20130521. (in Chinese).
|
[31] |
冯飞, 王征, 刘成明, 等. 基于Shearlet变换稀疏约束地震数据重构[J]. 石油物探, 2016, 55(5): 682−691. DOI: 10.3969/j.issn.1000-1441.2016.05.007.
FENG F, WANG Z, LIU C M, et al. Seismic data reconstruction based on sparse constraint in the Shearlet domain[J]. Geophysical Prospecting for Petroleum, 2016, 55(5): 682−691. DOI: 10.3969/j.issn.1000-1441.2016.05.007. (in Chinese).
|
[32] |
张良, 韩立国, 许德鑫, 等. 基于压缩感知技术的Shearlet变换重构地震数据[J]. 石油地球物理勘探, 2017, 52(2): 220−225.
ZHANG L, HAN L G, XU D X, et al. Seismic data reconstruction with Shearlet transform based on compressed sensing technology[J]. Oil Geophysical Prospecting, 2017, 52(2): 220−225. (in Chinese).
|
[33] |
闫海洋, 周辉, 刘海波, 等. FK和Shearlet域联合压缩感知数据重构技术[J]. 石油地球物理勘探, 2022, 57(3): 557-569.
YAN H Y, ZHOU H, LIU H B, et al. Compressed sensing data reconstruction technology in joint FK and Shearlet domain[J]. Oil Geophysical Prospecting, 2022, 57(3): 557-569. (in Chinese).
|
[34] |
余江奇, 曹思远, 陈红灵, 等. 改进阈值的Curvelet变换稀疏反褶积[J]. 石油地球物理勘探, 2017, 52(3): 426−433. DOI: 10.13810/j.cnki.issn.1000-7210.2017.03.003.
YU J Q, CAO S Y, CHEN H L, et al. Sparse deconvolution based on Curvelet transform of improved threshold[J]. Oil Geophysical Prospecting, 2017, 52(3): 426−433. DOI: 10.13810/j.cnki.issn.1000-7210.2017.03.003. (in Chinese).
|
[35] |
张入化, 苟其勇, 黄建平, 等. 基于Seislet域改进POCS算法的地震数据重构[J]. 物探化探计算技术, 2022, 44(5): 578-589.
ZHANG R H, GOU Q Y, HUANG J P, et al, Improve POCS algorithm based on compressed sensing for seismic data reconstruction in Seislet domain[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44(5): 578-589. (in Chinese).
|