ISSN 1004-4140
CN 11-3017/P
YAN X, ZHAO J H. Research Progress of Pericoronary Adipose Tissue Radiomics Based on Coronary Computed Tomography Angiography[J]. CT Theory and Applications, 2024, 33(4): 531-538. DOI: 10.15953/j.ctta.2023.179. (in Chinese).
Citation: YAN X, ZHAO J H. Research Progress of Pericoronary Adipose Tissue Radiomics Based on Coronary Computed Tomography Angiography[J]. CT Theory and Applications, 2024, 33(4): 531-538. DOI: 10.15953/j.ctta.2023.179. (in Chinese).

Research Progress of Pericoronary Adipose Tissue Radiomics Based on Coronary Computed Tomography Angiography

More Information
  • Received Date: September 11, 2023
  • Revised Date: November 27, 2023
  • Accepted Date: January 03, 2024
  • Available Online: January 30, 2024
  • Pericoronary adipose tissue (PCAT) is a type of adipose tissue tightly wrapped in the adventitia of the coronary artery, which communicates bidirectionally with the coronary artery wall and promotes the development of coronary atherosclerosis during vascular inflammation. PCAT based on coronary computed tomography angiography can extract quantitative features from images with high throughput, hence has better diagnostic efficacy for analyzing plaque composition and identifying vulnerable plaques, predicting coronary artery and hemodynamic stenosis, and identifying and predicting acute coronary syndrome. This paper reviewed the research progress of PCAT based on CCTA in coronary atherosclerosis.

  • [1]
    中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553−578. DOI: 10.3969/j.issn.1000-3614.2022.06.001.

    The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2021: An updated summary[J]. Chinese Circulation Journal, 2022, 37(6): 553−578. DOI: 10.3969/j.issn.1000-3614.2022.06.001. (in Chinese).
    [2]
    SCHMERMUND A, ECKERT J, SCHMIDT M, et al. Coronary computed tomography angiography: A method coming of age[J]. Clinical Research in Cardiology, 2018, 107(S2): 40−48. DOI: 10.1007/s00392-018-1320-5.
    [3]
    CHEN Y D, FANG W Y, CHEN J Y, et al. Chinese expert consensus on the non-invasive imaging examination pathways of stable coronary artery disease[J]. Journal of Geriatric Cardiology, 2018, 15(1): 30−40. DOI: 10.11909/j.issn.1671-5411.2018.01.012.
    [4]
    LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis[J]. European Journal of Cancer, 2012, 48(4): 441−446. DOI: 10.1016/j.ejca.2011.11.036.
    [5]
    LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: The bridge between medical imaging and personalized medicine[J]. Natute Reviews Clinical Oncology, 2017, 14(12): 749−762. DOI: 10.1038/nrclinonc.2017.141.
    [6]
    黄晶, 罗倩, 乔瑾, 等. 冠状动脉周围脂肪组织影像学及临床研究进展[J]. 中国医学影像学杂志, 2022, 30(11): 1192−1196. DOI: 10.3969/j.issn.1005-5185.2022.11.022.

    HUANG J, LUO Q, QIAO J, et al. Imaging and clinical research advances of pericoronary adipose tissue[J]. Chinese Journal of Medical Imaging, 2022, 30(11): 1192−1196. DOI: 10.3969/j.issn.1005-5185.2022.11.022. (in Chinese).
    [7]
    ANTONIADES C, ANTONOPOULOS A S, DEANFIELD J. Imaging residual inflammatory cardiovascular risk[J]. European Heart Journal, 2020, 41(6): 748−758. DOI: 10.1093/eurheartj/ehz474.
    [8]
    LIN A, DEY D, WONG D T L, et al. Perivascular adipose tissue and coronary atherosclerosis: From biology to imaging phenotyping[J]. Current Atherosclerosis Reports, 2019, 21(12): 47. DOI: 10.1007/s11883-019-0817-3.
    [9]
    ANTONOPOULOS A S, SANNA F, SABHARWAL N, et al. Detecting human coronary inflammation by imaging perivascular fat[J]. Science Translational Medicine, 2017, 9: 2658. DOI: 10.1126/scitranslmed.aal2658.
    [10]
    GOELLER M, ACHENBACH S, CADET S, et al. Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease[J]. JAMA Cardiology, 2018, 3(9): 858−863. DOI: 10.1001/jamacardio.2018.1997.
    [11]
    OIKONOMOU E K, MARWAN M, DESAI M Y, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data[J]. Lancet, 2018, 392: 929−939. DOI: 10.1016/S0140-6736(18)31114-0.
    [12]
    李双双, 侯震, 刘娟, 等. 影像组学分析与建模工具综述[J]. 中国医学物理学杂志, 2018, 35(9): 1043−1049. DOI: 10.3969/j.issn.1005-202X.2018.09.010.

    LI S S, HOU Z, LIU J, et al. Review of radiomic analysis and modeling tools[J]. Chinese Journal of Medical Physics, 2018, 35(9): 1043−1049. DOI: 10.3969/j.issn.1005-202X.2018.09.010. (in Chinese).
    [13]
    谢凯, 孙鸿飞, 林涛, 等. 影像组学中特征提取研究进展[J]. 中国医学影像技术, 2017, 33(12): 1792−1796. DOI: 10.13929/j.1003-3289.201707022.

    XIE K, SUN H F, LIN T, et al. Research progresses in feature extraction of radiomics[J]. Chinese Journal of Medical Imaging Technology, 2017, 33(12): 1792−1796. DOI: 10.13929/j.1003-3289.201707022. (in Chinese).
    [14]
    MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. Journal of Nuclear Medicine, 2020, 61(4): 488−495. DOI: 10.2967/jnumed.118.222893.
    [15]
    MAUROVICH H P, FERENCIK M, VOROS S, et al. Comprehensive plaque assessment by coronary CT angiography[J]. Nature Reviews Cardiology, 2014, 11(7): 390−402. DOI: 10.1038/nrcardio.2014.60.
    [16]
    SAGRIS M, ANTONOPOULOS A S, SIMANTIRIS S, et al. Pericoronary fat attenuation index-a new imaging biomarker and its diagnostic and prognostic utility: A systematic review and meta-analysis[J]. European Heart Journal Cardiovascular Imaging, 2022, 23(12): e526−e536. DOI: 10.1093/ehjci/jeac174.
    [17]
    HU G Q, GE Y Q, HU X K, et al. Predicting coronary artery calcified plaques using perivascular fat CT radiomics features and clinical risk factors[J]. BMC Medical Imaging, 2022, 22(1): 134. DOI: 10.1186/s12880-022-00858-7.
    [18]
    KIM J N, GOMEZ-PEREZ L, ZIMIN V N, et al. Pericoronary adipose tissue radiomics from coronary computed tomography angiography identifies vulnerable plaques[J]. Bioengineering (Basel), 2023, 10(3). DOI: 10.3390/bioengineering10030360.
    [19]
    CHEN Q, PAN T, WANG Y N, et al. A coronary CT angiography radiomics model to identify vulnerable plaque and predict cardiovascular events[J]. Radiology, 2023, 307(2): e221693. DOI: 10.1148/radiol.221693.
    [20]
    MEIJBOOM W B, Van MIEGHEM C A, van PELT N, et al. Comprehensive assessment of coronary artery stenoses: Computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina[J]. Journal of the American College of Cardiology, 2008, 52(8): 636−643. DOI: 10.1016/j.jacc.2008.05.024.
    [21]
    PIJLS N H, de BRUYNE B, PEELS K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses[J]. The New England Journal of Medicine, 1996, 334(26): 1703−1708. DOI: 10.1056/NEJM199606273342604.
    [22]
    PIJLS N H, TANAKA N, FEARON W F. Functional assessment of coronary stenoses: Can we live without it?[J]. European Heart Journal, 2013, 34(18): 1335−1344. DOI: 10.1093/eurheartj/ehs436.
    [23]
    查昕仪, 陶青, 胡粟, 等. 冠周脂肪影像组学鉴别冠状动脉狭窄程度初探[J]. 影像诊断与介入放射学, 2022, 31(1): 20−25. DOI: 10.3969/j.issn.1005-8001.2022.01.004.

    ZHA X Y, TAO Q, HU S, et al. Preliminary study of pericoronary adipose tissue based on radiomic model in coronary artery stenosis[J]. Diagnostic Imaging & Interventional Radiology, 2022, 31(1): 20−25. DOI: 10.3969/j.issn.1005-8001.2022.01.004. (in Chinese).
    [24]
    徐子良, 文娣娣, 赵宏亮, 等. 基于冠状动脉周围脂肪组织影像组学特征及神经网络模型预测冠状动脉狭窄血流动力学严重程度[J]. 国际医学放射学杂志, 2021, 44(5): 511−515. DOI: 10.19300/j.2021.L19147.

    XU Z L, WEN D D, ZHAO H L, et al. Predict hemodynamic severity of coronary artery stenosis with peri-coronary adipose tissue based radiomics and neural network model[J]. International Journal of Medical Radiology, 2021, 44(5): 511−515. DOI: 10.19300/j.2021.L19147. (in Chinese).
    [25]
    WEN D, XU Z, AN R, et al. Predicting haemodynamic significance of coronary stenosis with radiomics-based pericoronary adipose tissue characteristics[J]. Clinical Radiology, 2022, 77(2): e154−e161. DOI: 10.1016/j.crad.2021.10.019.
    [26]
    YU L, CHEN X, LING R, et al. Radiomics features of pericoronary adipose tissue improve CT-FFR performance in predicting hemodynamically significant coronary artery stenosis[J]. European Radiolgy, 2023, 33: 2004−2014. DOI: 10.1007/s00330-022-09175-7.
    [27]
    中国医师协会急诊医师分会, 中华医学会心血管病学分会, 中华医学会检验医学分会. 急性冠脉综合征急诊快速诊疗指南[J]. 中华危重症医学杂志(电子版), 2016, 9(2): 73−80. DOI: 10.3877/cma.j.issn.1674-6880.2016.02.001.

    Emergency Physician Branch of Chinese Medical Doctor Association, Cardiovascular Branch of Chinese Medical Association, Laboratory Medicine Branch of Chinese Medical Association. Guidelines for rapid emergency diagnosis and treatment of acute coronary syndrome[J]. Chinese Journal of Critical Care Medicine, 2016, 9(2): 73−80. DOI: 10.3877/cma.j.issn.1674-6880.2016.02.001. (in Chinese).
    [28]
    OIKONOMOU E K, WILLIAMS M C, KOTANIDIS C P, et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography[J]. European Heart Journal, 2019, 40(43): 3529−3543. DOI: 10.1093/eurheartj/ehz592.
    [29]
    陶青, 邹伟婕, 范艳芬, 等. 冠状动脉周围脂肪直方图参数鉴别急性冠状动脉综合征及稳定性冠心病的价值初探[J]. 中华放射学杂志, 2020, (3): 192−197. DOI: 10.3760/cma.j.issn.1005-1201.2020.03.004.

    TAO Q, ZOU W J, FAN Y F, et al. Preliminary study on the value of pericoronary adipose tissue histogram parameters for the differentiation of acute coronary syndrome and stable coronary artery disease[J]. Chinese Journal of Radiology, 2020, (3): 192−197. DOI: 10.3760/cma.j.issn.1005-1201.2020.03.004. (in Chinese).
    [30]
    LIN A, KOLOSSVÁRY M, YUVARAJ J, et al. Myocardial infarction associates with a distinct pericoronary adipose tissue radiomic phenotype: A prospective case-control study[J]. JACC Cardiovascular Imaging, 2020, 13(11): 2371−2383. DOI: 10.1016/j.jcmg.2020.06.033.
    [31]
    SHANG J, MA S, GUO Y, et al. Prediction of acute coronary syndrome within 3 years using radiomics signature of pericoronary adipose tissue based on coronary computed tomography angiography[J]. European Radiology, 2022, 32(2): 1256−1266. DOI: 10.1007/s00330-021-08109-z.
    [32]
    刘羽遥, 刘丹, 戴佳霖, 等. 基于CCTA的冠状动脉周围脂肪组织影像组学诊断不稳定型心绞痛[J]. 临床心血管病杂志, 2023, 39(8): 624−631. DOI: 10.13201/j.issn.1001-1439.2023.08.011.

    LIU Y Y, LIU D, DAI J L, et al. Diagnosis of unstable angina pectoris based on CCTA radiomic of pericoronary adipose tissue[J]. Journal of Clinical Cardiology, 2023, 39(8): 624−631. DOI: 10.13201/j.issn.1001-1439.2023.08.011. (in Chinese).
  • Related Articles

    [1]ZHOU Jie, ZHENG Yanting, JIANG Shuqi, AN Jie, QIU Shijun, CHEN Huai. Machine Learning Prediction Models for Staging of Non-small Cell Lung Cancer Patients Using Radiomics[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.186
    [2]FENG Han, XIE Mingguo. Application Advancements of Radiomics in Predicting the Prognosis of Patients with Gastric Cancer[J]. CT Theory and Applications, 2025, 34(4): 714-719. DOI: 10.15953/j.ctta.2024.040
    [3]LI Manman, FU Yigang, XIAO Yong, CHEN Wang, FENG Feng, XU Guodong. CT Radiomics Nomogram Prediction for Tumor Deposits and Prognosis in Colorectal Cancer[J]. CT Theory and Applications, 2025, 34(4): 694-702. DOI: 10.15953/j.ctta.2024.055
    [4]CHEN Xiao, YANG Bin. The Application of Radiomics in the Prognosis of Non-small Cell Lung Cancer[J]. CT Theory and Applications, 2024, 33(3): 385-390. DOI: 10.15953/j.ctta.2023.071
    [5]ZHOU Hui, FENG Feng. Enhancing Esophageal Cancer Prognosis and Treatment Evaluation: Recent Advances in Computed Tomography Radiomics[J]. CT Theory and Applications, 2024, 33(3): 377-383. DOI: 10.15953/j.ctta.2023.155
    [6]XUE Ruihong, WU Tingting, CHAI Jun, ZHANG Yujie, LIANG Enhe, ZHENG Zhiqiang. Radiomics-based Nomogram for Predicting Invasiveness of Subsolid Pulmonary Nodules[J]. CT Theory and Applications, 2024, 33(3): 343-350. DOI: 10.15953/j.ctta.2023.213
    [7]WANG Shan, ZHAO Jianhua. Research Progress in Imaging Radiomics Based on Computed Tomography and Magnetic Resonance in Ischemic Stroke[J]. CT Theory and Applications, 2024, 33(1): 83-89. DOI: 10.15953/j.ctta.2023.080
    [8]CHENG Changfa, CHEN Huilin, ZHAI Yanan, GUO Shunlin. Advances in Radiomics for Predicting Intraoperative Hemodynamic Instability in Pheochromocytoma Surgery[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.248
    [9]LIU Yuting, LIU Aishi. Research Progress of Radiomics in the Diagnosis of Pulmonary Nodules[J]. CT Theory and Applications, 2023, 32(4): 573-578. DOI: 10.15953/j.ctta.2022.056
    [10]LI Min, LIU Changchun, ZHANG Zhe, ZHOU Nan, ZHANG Jianzeng, XU Hui, YAN Yuchang, ZHAO Liqin. Evaluation of the Severity Degree of Esophageal Varices in Cirrhosis Based on Radiomics Features of Hepatic Segment CT Imaging[J]. CT Theory and Applications, 2021, 30(6): 717-726. DOI: 10.15953/j.1004-4140.2021.30.06.07
  • Cited by

    Periodical cited type(1)

    1. 倪晓龙,周凤云,施政,马永忠,程晓光. 基于剂量模拟人的腹部CT扫描辐射剂量分布研究. CT理论与应用研究. 2024(06): 808-814 . 本站查看

    Other cited types(0)

Catalog

    Article views (280) PDF downloads (45) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return