Citation: | LIU Q, ZENG Y M, SUN J K, et al. Analysis of Influencing Factors on Pulmonary Nodule Detection by Computed Tomography with Artificial Intelligence: A Phantom Study[J]. CT Theory and Applications, 2024, 33(4): 471-477. DOI: 10.15953/j.ctta.2023.190. (in Chinese). |
Objective: This study aimed to analyze the factors influencing artificial intelligence (AI) diagnostic system detection of pulmonary nodules on computed tomography (CT) scans, using a chest simulation phantom experiment with simulated lung nodules. Methods: A Toshiba (Canon) 64-slice spiral CT scanner was used. The phantom was scanned and images were reconstructed under varying scanning parameters (dose, reconstruction algorithm, and layer thickness) and non-scanning parameters (nodule size, density, and chest location). Subsequently, the AI diagnostic system performed pulmonary nodule detection on the images. Results: (1) No statistically significant difference was observed in the true positive rate of pulmonary nodules detected at different scanning doses. However, the low-dose mode produced a higher number of false positives. (2) Comparisons across the three iterative reconstruction algorithms revealed no statistically significant difference in the true positive rate of detected pulmonary nodules. However, the Strong group exhibited a higher true positive rate and a higher number of false positives. (3) The true positive rate of lung nodules detected in thin images was significantly higher than in thick images. (4) The true positive rate of pulmonary nodules located in the paramediastinum was significantly higher in the subpleural and lung parenchyma. (5) The true positive rate of nodules ≥8 mm was significantly higher than that of nodules ≤5 mm. (6) No statistically significant difference was observed in the true positive rate when detecting nodules with differing densities. Conclusion: Both CT scanning parameters (dose, reconstruction algorithm, and layer thickness) and non-scanning parameters (nodule size, density, and chest location) can influence the detection of pulmonary nodules by AI systems.
[1] |
庹敏, 侯梦婷, 鲍娟. 人工智能在医疗领域的应用现状和思考[J]. 中国现代医生, 2022, 60(22): 72−75. DOI: 10.3969/j.issn.1673-9701.2022.22.zwkjzlml-yyws202222017.
TUO M, HOU M T, BAO J. Application status and thinking of artificial intelligence in medical field[J]. Chinese Modern Doctor, 2022, 60(22): 72−75. DOI: 10.3969/j.issn.1673-9701.2022.22.zwkjzlml-yyws202222017. (in Chinese).
|
[2] |
明佳蕾, 方向明. 基于人工智能的CT肺结节检出临床应用及研究进展[J]. 中华放射学杂志, 2019, 53(6): 522−525. DOI: 10.3760/cma.j.issn.1005-1201.2019.06.017.
MING J L, FANG X M. Clinical application and research progress of lung nodule detection using artificial intelligence CT[J]. Chinese Journal of Radiology, 2019, 53(6): 522−525. DOI: 10.3760/cma.j.issn.1005-1201.2019.06.017. (in Chinese).
|
[3] |
LI K, LIU K F, ZHONG Y H, et al. Assessing the predictive accuracy of lung cancer, metastases, and benign lesions using an artificial intelligence-driven computer aided diagnosis system[J]. Quantitative Imaging in Medicine and Surgery, 2021, 11(8): 3629−3642. DOI: 10.21037/qims-20-1314.
|
[4] |
KANG S M, KIM T H, SHIN J M, et al. Optimization of a chest computed tomography protocol for detecting pure ground glass opacity nodules: A feasibility study with a computer-assisted detection system and a lung cancer screening phantom[J]. PLOS ONE, 2020, E15(5): e0232688.
|
[5] |
SOLOMON J, MARIN D, ROY CHOUDHURY K, et al. Effect of radiation dose reduction and reconstruction algorithm on image noise, contrast, resolution, and detectability of subtle hypoattenuating liver lesions at multidetector CT: Filtered back projection versus a commercial model-based iterative reconstruction algorithm[J]. Radiology, 2017, 284: 777−787. DOI: 10.1148/radiol.2017161736.
|
[6] |
JIN H, LI Z, TONG R, et al. A deep 3D residual CNN for false-positine in pulmonary nodule detection[J]. Medical Physics, 2018, 45(5): 2097−2107. DOI: 10.1002/mp.12846.
|
[7] |
SILVA M, SCHAEFER-PROKOP C M, JACOBS C, et al. Detection of subsolid nodules in lung cancer screening: Complementary sensitivity of visual reading and computer-aided diagnosis[J]. Investigative Radiology, 2018, 53(8): 441−449. DOI: 10.1097/RLI.0000000000000464.
|
[8] |
NARAYANAN B N, HARDIE R G, KEBEDE T M, et al. Performence analysis of a computer-aided detection system for lung nodules in CT at different slice thickness[J]. Journal of Medical Imaging, 2018, 5(1): 014504.
|
[9] |
MESSERLI M, KLUCKERT T, KNITEL M, et al. Computer-aided detection (CAD) of solid pulmonary nodules in chest X-ray equivalent ultralow dose chest CT-first in-vivo result at dose level of 0.13 mSv[J]. European Journal of Radiology, 2016, 85(12): 2217−2224. DOI: 10.1016/j.ejrad.2016.10.006.
|
[10] |
GODOY M C, KIM T J, WHITE C S, et al. Benefit of computer-aided detection analysis for the detection of subsolid and solid lung nodules on thin and thick-section CT[J]. American Journal of Roentgenology, 2013, 200(1): 74−83. DOI: 10.2214/AJR.11.7532.
|
[11] |
赵峰, 曾勇明, 彭刚, 等. 胸部低剂量CT扫描管电流与噪声分布相关性研究[J]. 中华放射医学与防护杂志, 2012, 32(1): 100−103. DOI: 10.3760/cma.j.issn.0254-5098.2012.01.030.
ZHAO F, ZENG Y M, PENG G, et al. Correlation between the tube current and image noise in low-dose chest CT scean[J]. Chinese Journal of Radiological Medicine and Protection, 2012, 32(1): 100−103. DOI: 10.3760/cma.j.issn.0254-5098.2012.01.030. (in Chinese).
|
[12] |
BAN K T, KIM J S, NA Y H, et al. Pulmonary nodules: Automated detection on CT image with morphologic matching algorithm-preliminary results[J]. Radiology, 2005, 236(1): 286−293. DOI: 10.1148/radiol.2361041286.
|
[13] |
HAN H, LI L, HAN F, et al. Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vecter quantization scheme[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(2): 648−659.
|
[14] |
BROWN M S, LO P, GOLDIN J C, et al. Toward clinically usable CAD for lung cancer screening with computed tomography[J]. European Radiology, 2014, 24(11): 2719−2728. DOI: 10.1007/s00330-014-3329-0.
|
[15] |
SETIO A A, CIOMPI F, LATJENS G et al. Pulmonary nodules detection in CT image: False positive redution using multi-view convolutional networks[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1160−1169. DOI: 10.1109/TMI.2016.2536809.
|
[16] |
HAN G, LIU X, ZHENG G, et al. Automatic recognition of 3D GGO CT imaging signs through the fusion of hybird resampling and layer-wise finetining CNNs[J]. Medical & Biological Engineering & Computing, 2018, 56(12): 2201−2212.
|
[17] |
FU B J, WANG G S, WU M Y, et al. Influence of CT effffective dose and convolution kernel on the detection of pulmonary nodules in difffferent artifificial intelligence software systems: A phantom study[J]. European Journal of Radiology, 2020, 126: 108928. DOI: 10.1016/j.ejrad.2020.108928.
|
[1] | PAN Zhijie, LIU Ling, LI Qingyao, QU Tingting, ZHANG Shuai, XIE Xueqian. Deep Learning Image Reconstruction to Improve Computed Tomography Image Quality of the Phantom with Standard Liver Density[J]. CT Theory and Applications, 2025, 34(4): 677-685. DOI: 10.15953/j.ctta.2024.056 |
[2] | MA Tian, LI Fang, ZHOU Yan, XU Yinghao, HE Yi. A Phantom Experimental Study on Improving the Imaging Quality of Stent CT at a Fast Heart Rate[J]. CT Theory and Applications, 2024, 33(5): 594-600. DOI: 10.15953/j.ctta.2024.021 |
[3] | SU Yinchen, ZHANG Xiaoqin. Artificial Intelligence-assisted Diagnosis in Detecting Lung Nodules and Differentiating Benign from Malignant Nodules[J]. CT Theory and Applications, 2024, 33(3): 325-331. DOI: 10.15953/j.ctta.2023.128 |
[4] | LIU Yuting, LIU Aishi. Research Progress of Radiomics in the Diagnosis of Pulmonary Nodules[J]. CT Theory and Applications, 2023, 32(4): 573-578. DOI: 10.15953/j.ctta.2022.056 |
[5] | CHEN Xinhua, HUANG Xiaoqi, LI Jianlong, GUO Youmin. Evaluation of the Diagnostic Value of Pulmonary Nodules Based on Two AI Software[J]. CT Theory and Applications, 2023, 32(4): 493-499. DOI: 10.15953/j.ctta.2022.087 |
[6] | FANG Shu, CHEN Linyu, CHEN Yong, DONG Haipeng, WANG Lan, MIN Jihua. Phantom Study on the Influence of CT Model and Tube Voltage on Image Quality[J]. CT Theory and Applications, 2022, 31(3): 345-350. DOI: 10.15953/j.ctta.2021.042 |
[7] | CHEN Linyu, FANG Shu, CHEN Yong, DONG Haipeng, WANG Lan, CHANG Rui. Comparison of Image Quality between Virtual Monochromatic Images and Conventional CT Images[J]. CT Theory and Applications, 2022, 31(2): 219-226. DOI: 10.15953/j.ctta.2021.041 |
[8] | LIU Na, ZHAO Zhengkai, ZOU Jiayu, LI Yi, LIU Jian. Evaluation of Detection and Diagnostic Efficiency of Pulmonary Nodules by Chest CT Based on Artificial Intelligence[J]. CT Theory and Applications, 2021, 30(6): 709-715. DOI: 10.15953/j.1004-4140.2021.30.06.06 |
[9] | LIU Huan, FU Quan-hai, CHEN Xiao-Zhao, HOU Yao-fang, SUN Zhi-yong, KANG Yan. Design and Evaluation of Dental CT Test Phantom[J]. CT Theory and Applications, 2014, 23(6): 959-966. |
[10] | WANG Xian-gang, ZHANG Chao-zong, GUO Zhi-ping. Automatic Method of Rotation Center Determination with Hough Transform and Thin Cylinder Phantom[J]. CT Theory and Applications, 2010, 19(4): 1-6. |
1. |
邓扬,陆金琦,余信江,胡超. 一种结合弹性波CT正演模拟与钻孔注水法的防渗墙检测方法研究. 计算机测量与控制. 2024(03): 125-130 .
![]() | |
2. |
何继善,李帝铨,胡艳芳,凌帆,王金海. 城市强干扰环境地下空间探测技术与应用. 工程地球物理学报. 2022(05): 559-567 .
![]() |