ISSN 1004-4140
CN 11-3017/P
WANG P Q, YANG B, PENG Z F, et al. Imaging Bone Metastases: Research Progress[J]. CT Theory and Applications, 2025, 34(2): 327-332. DOI: 10.15953/j.ctta.2023.215. (in Chinese).
Citation: WANG P Q, YANG B, PENG Z F, et al. Imaging Bone Metastases: Research Progress[J]. CT Theory and Applications, 2025, 34(2): 327-332. DOI: 10.15953/j.ctta.2023.215. (in Chinese).

Imaging Bone Metastases: Research Progress

More Information
  • Received Date: December 04, 2023
  • Revised Date: April 14, 2024
  • Accepted Date: April 27, 2024
  • Available Online: May 20, 2024
  • Bone is a common site for cancer metastasis, with a higher incidence than primary bone malignancies. As various cancer treatment regimens continue to improve, the five-year survival rate for cancer patients has risen steadily. However, this has also led to an increased likelihood of bone metastasis and skeletal-related events. Timely and accurate diagnosis of bone metastases, along with proper assessment of therapeutic response, is crucial for developing personalized treatment plans and improving patient survival. This paper reviews current imaging examinations for bone metastases, and explores the potential of new imaging techniques for diagnosing tumor-related bone metastases.

  • [1]
    CECCHINI M G, WETTERWALD A, PLUIJM G V D, et al. Molecular and biological mechanisms of bone metastasis[J]. European Association of Urology Update Series, 2005, (3): 214-226. DOI: 10.1016/j.euus.2005.09.006.
    [2]
    BUSSARD K M, GAY C V, MASTRO A M. The bone microenvironment in metastasis; What is special about bone?[J]. Cancer Metastasis Reviews, 2008, 27(1). DOI: 10.1007/s10555-007-9109-4.
    [3]
    COLEMAN R, HADJI P, BODY J J, et al. Bone health in cancer: ESMO clinical practice guidelines[J]. Ann Oncol, 2020, 31(12). DOI: 10.1016/j.annonc.2020.07.019.
    [4]
    O’SULLIVAN, CARTY F L, CRONIN C G. Imaging of bone metastasis: An update[J]. World Journal of Radiology, 2015, 7(8). DOI: 10.4329/wjr.v7.i8.202.
    [5]
    YU H H, TSAI Y Y, HOFFE S E. Overview of diagnosis and management of metastatic disease to bone[J]. Cancer Control, 2012, 19(2). DOI: 10.1177/107327481201900202.
    [6]
    CHOI J, RAGHAVAN M. Diagnostic imaging and image-guided therapy of skeletal metastases[J]. Cancer Control, 2012, 19(2). DOI: 10.1177/107327481201900204.
    [7]
    MILLER T T. Bone tumors and tumorlike conditions: Analysis with conventional radiography[J]. Radiology, 2008, 246(3). DOI: 10.1148/radiol.2463061038.
    [8]
    SUN W K, LIU S L, GUO J, et al. A CT-based radiomics nomogram for distinguishing between benign and malignant bone tumours[J]. Cancer Imaging, 2021, 21(1). DOI: 10.1186/s40644-021-00387-6.
    [9]
    WANG Q, SUN B, MENG X, et al. Density of bone metastatic lesions increases after radiotherapy in patients with breast cancer[J]. Journal of Radiation Research, 2019, 60(3): 394-400. DOI: 10.1093/jrr/rry098.
    [10]
    ISHIWATA Y, HIEDA Y, KAKI S, et al. Improved diagnostic accuracy of bone metastasis detection by water-hap associated to non-contrast CT[J]. Diagnostics (Basel), 2020, 10(10): 853-864. DOI: 10.3390/diagnostics10100853.
    [11]
    BÄUERLE T, SEMMLER W. Imaging response to systemic therapy for bone metastases[J]. European Society of Radiology, 2009, 19(10): 2495-2507. DOI: 10.1007/s00330-009-1443-1.
    [12]
    YANG H L, LIU T, WANG X M, et al. Diagnosis of bone metastases: A meta-analysis comparing 18F-FDG PET, CT, MRI and bone scintigraphy[J]. European Society of Radiology, 2011, 21(12): 2604-2617. DOI: 10.1007/s00330-011-2221-4.
    [13]
    SADIK M, SUURKULA M, HöGLUND P, et al. Quality of planar whole-body bone scan interpretations: A nationwide survey[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35(8): 1464-1472. DOI: 10.1007/s00259-008-0721-5.
    [14]
    IMBRIACO M, LASON S M, YEUNG H W, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: The bone scan index[J]. Clinical Cancer Research, 1998, 4(7): 1765-1772.
    [15]
    WUESTEMANN J, HUPFELD S, KUPITZ D, et al. Analysis of bone scans in various tumor entities using a deep-learning-based artificial neural network algorithm-evaluation of diagnostic performance[J]. Cancers (Basel), 2020, 12(9). DOI: 10.3390/cancers12092654.
    [16]
    ISODA T, BABA S, MARUOKA Y, et al. Influence of the different primary cancers and different types of bone metastasis on the lesion-based artificial neural network value calculated by a computer-aided diagnostic system, bonenavi, on bone scintigraphy images[J]. Asia Oceania Journal of Nuclear Medicine & Biology, 2017, 5(1). DOI: 10.22038/aojnmb.2016.7606.
    [17]
    SHIBAHARA I, SAITO R, OSADA Y, et al. Incidence of initial spinal metastasis in glioblastoma patients and the importance of spinal screening using MRI[J]. Journal of Neuro-Oncology, 2019, 141(2). DOI: 10.1007/s11060-018-03036-4.
    [18]
    PARK S, PARK J G, JUN S, et al. Differentiation of bone metastases from prostate cancer and benign red marrow depositions of the pelvic bone with multiparametric MRI[J]. Magnetic Resonance Imaging, 2020, 73. DOI: 10.1016/j.mri.2020.08.019.
    [19]
    KUMAR V, GU Y, BASU S, et al. Radiomics: The process and the challenges[J]. Magnetic Resonance Imaging, 2012, 30(9). DOI: 10.1016/j.mri.2012.06.010.
    [20]
    GUAN Y, PECK K K, JUN S, et al. T1-weighted dynamic contrast-enhanced MRI to differentiate nonneoplastic and malignant vertebral body lesions in the spine[J]. Radiology, 2020, 297(2). DOI: 10.1148/radiol.2020190553.
    [21]
    SUN G, ZHANG Y X, LIU F, et al. Whole-body magnetic resonance imaging is superior to skeletal scintigraphy for the detection of bone metastatic tumors: A meta-analysis[J]. European Review for Medicaland Pharmacological Sciences, 2020, 24(13): 7240-7252. DOI: 10.26355/eurrev_202007_21879.
    [22]
    KOSMIN M, PADHANI A R, GOGBASHIAN A, et al. Comparison of whole-body MRI, CT, and bone scintigraphy for response evaluation of cancer therapeutics in metastatic breast cancer to bone[J]. Radiology, 2020, 297(3): 622-629. DOI: 10.1148/RADIOL.2020192683.
    [23]
    OTTOSSON F, BACO E, LAURITZEN, P M, et al. The prevalence and locations of bone metastases using whole-body MRI in treatment-naïve intermediate- and high-risk prostate cancer[J]. European Radiology, 2021, 31(5): 2747-2753. DOI: 10.1007/s00330-020-07363-x.
    [24]
    VARGAS H A, SCHOR-BARDACH R, LONG N, et al. Prostate cancer bone metastases on staging prostate MRI: Prevalence and clinical features associated with their diagnosis[J]. Abdominal Radiology (NY), 2017, 42(1): 271-277. DOI: 10.1007/s00261-016-0851-3.
    [25]
    LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: Extracting more information from medical images ssing advanced feature analysis[J]. European Journal of Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
    [26]
    FILOGRANA L, LENKOWICZ J, CELLINI F, et al. Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: A feasibility study[J]. La Radiologia Medica, 2019, 124(1). DOI: 10.1007/s11547-018-0935-y.
    [27]
    LANG N, ZHANG Y, ZHANG E L, et al. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI[J]. Magnetic Resonance Imaging, 2019, 64: 4-12. DOI: 10.1016/j.mri.2019.02.013.
    [28]
    XIONG X, WANG J, HU S, et al. Differentiating between multiple myeloma and metastasis subtypes of lumbar vertebra lesions using machine learning-based radiomics[J]. Frontiers in Oncology, 2021: 601699. DOI: 10.3389/fonc.2021.601699.
    [29]
    CHEN K, CAO J, ZHANG X, et al. Differentiation between spinal multiple myeloma and metastases originated from lung using multi-view attention-guided network[J]. Frontiers in Oncology, 2022, 12: 981769. DOI: 10.3389/fonc.2022.981769.
    [30]
    YIN P, MAO N, ZHANG C, et al. A triple-classification radiomics model for the differentiation of primary chordoma, giant cell tumor, and metastatic tumor of sacrum based on T2-weighted and contrast-enhanced T1-weighted MRI[J]. Journal of Magnetic Resonance Imaging, 2019, 49(3): 1-8. DOI: 10.1002/jmri.26238.
    [31]
    WANG Y R, YU B, ZHONG F, et al. MRI-based texture analysis of the primary tumor for pre-treatment prediction of bone metastases in prostate Cancer[J]. Magnetic Resonance Imaging, 2019, (3): 7-18. DOI: 10.1016/j.mri.2019.03.007.
    [32]
    JIANG X, REN M, SHUANG X, et al. Multiparametric MRI-based radiomics approaches for preoperative prediction of EGFR mutation status in spinal bone metastases in patients with lung adenocarcinoma[J]. Journal of Magnetic Resonance Imaging, 2021, 54(2): 497-507. DOI: 10.1002/jmri.27579.
    [33]
    REN M L, YANG H Z, LAI Q Y, et al. MRI-based radiomics analysis for predicting the EGFR mutation based on thoracic spinal metastases in lung adenocarcinoma patients[J]. Medical Physics, 2021, 48(9): 1-10. DOI: 10.1002/mp.15137.
    [34]
    CAO R, DONG Y, WANG X, et al. MRI-based radiomics nomogram as a potential biomarker to predict the EGFR mutations in exon 19 and 21 based on thoracic spinal metastases in lung adenocarcinoma[J]. Academic Radiology, 2022, 29(3): e9-e17. DOI: 10.1016/j.acra.2021.06.004.
    [35]
    HAMAOKA T, MADEWELL J E, PODOLOFF D A, et al. Bone imaging in metastatic breast cancer[J]. Journal Clinical Oncology, 2004, 22(14): 2942-2953. DOI: 10.1200/JCO.2004.08.181.
    [36]
    EVEN-SAPIR E, METSER U I, GENNADY, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT[J]. Journal of Nuclear Medicine, 2006, 47(2): 287-297.
    [37]
    CUCCURULLO V, CASCINI G L, TAMBURRINI O, et al. Bone metastases radiopharmaceuticals: An overview[J]. Current Radiopharmaceuticals, 2013, 6(1): 41-47. DOI: 10.2174/1874471011306010007.
    [38]
    BASTAWROUS S, BHARGAVA P, BEHNIA F, et al. Newer PET application with an old tracer: Role of 18F-Naf skeletal PET/CT in oncologic practice[J]. Radiographics, 2014, 34(5): 1295-1316. DOI: 10.1148/rg.345130061.
    [39]
    WOUTER A M, BROOS, FRISO M, et al. Accuracy of 18F-Naf PET/CT in bone metastasis detection and its effect on patient management in patients with breast carcinoma[J]. Nuclear Medicine Communication, 2018, 39(4): 325-333. DOI: 10.1097/MNM.0000000000000807.
    [40]
    LEE J W, PARK Y J, JEON Y S, et al. Clinical value of dual-phase F-18 sodium fluoride PET/CT for diagnosing bone metastasis in cancer patients with solitary bone lesion[J]. Quantitative Imaging in Medicine and Surg, 2020, 10(11): 2098-2111. DOI: 10.21037/qims-20-607.
    [41]
    HEIDENREICH A, BASTIAN P J, BELLMUNT J, et al. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent-update 2013[J]. European Urology, 2014, 65(1): 124-137. DOI: 10.1016/j.eururo.2013.09.046.
    [42]
    AFSHAR-OROMIEH A, HOLLAND-LETZ T, GIESEL F L, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: Evaluation in 1007 patients[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44(8): 1258-1268. DOI: 10.1007/s00259-017-3711-7.
    [43]
    JANSSEN J C, MEISSNER S, WOYTHAL N, et al. Comparison of hybrid 68Ga-PSMA-PET/CT and 99mTc-DPD-SPECT/CT for the detection of bone metastases in prostate cancer patients: Additional value of morphologic information from low dose CT[J]. European Radiology, 2018, 28(2): 610-619. DOI: 10.1007/s00330-017-4994-6.
    [44]
    WU J, WANG Y, LIAO T, et al. Comparison of the relative diagnostic performance of [68G9]Ga-DOTA-FAPI-04 and 18F-FDG PET/CT for the detection of bone metastasis in patients with different cancers[J]. Frontiers in Oncology, 2021, 11(0): 737827. DOI: 10.3389/fonc.2021.737827.
    [45]
    CATALANO O A, NICOLAI E, ROSEN B R, et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients[J]. British Journal of Cancer, 2015, 112(9): 1452-1460. DOI: 10.1038/bjc.2015.112.
    [46]
    QIAO Z Y, WANG S D, WANG H Y, et al. Diagnostic capability of 18F-PSMA PET-MRI and pelvic MRI plus bone scan in treatment-naive prostate cancer: A single-center paired validating confirmatory study[J]. International Journal of Surgery, 2024, 110(1): 87-94. DOI: 10.1097/JS9.0000000000000787.
    [47]
    ÇELEBI F. What is the diagnostic performance of 18F-FDG-PET/MRI in the detection of bone metastasis in patients with breast cancer?[J]. European Journal of Breast Health, 2019, 15(4): 213-216. DOI: 10.5152/ejbh.2019.4885.
  • Related Articles

    [1]Zhu Chenchen, Ma Zixuan, Feng Zechen, Niu Yantao, Gao Xing, Peng Lexin, Li Jing, Liu Dandan. Effect of Tube Projection Angle of Scout Images on Radiation Dose and Image Quality in Head CT: Based on ATCM Combined with Spectral Shaping Technology[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.271
    [2]PAN Zhijie, LIU Ling, LI Qingyao, QU Tingting, ZHANG Shuai, XIE Xueqian. Deep Learning Image Reconstruction to Improve Computed Tomography Image Quality of the Phantom with Standard Liver Density[J]. CT Theory and Applications, 2025, 34(4): 677-685. DOI: 10.15953/j.ctta.2024.056
    [3]QI Rongfei, JIANG Wenlong, HAO Yunyun, YANG Liusha, CHANG Yingjuan, WU Zhibin. A Study of Image Quality and Radiation Dose in Lower Extremity Computed Tomography Angiography Using Caudo-cranial Flash Scanning[J]. CT Theory and Applications, 2025, 34(3): 385-391. DOI: 10.15953/j.ctta.2024.210
    [4]QI Weiwei, CHENG Jin, CHEN Chuhan, AN Bei, LIU Xiaoyi, FU Ling, WANG Yi. Value of Low Tube Voltage Combined with Deep Learning Image Reconstruction Algorithm to Reduce Radiation Dose in Combined Thoracoabdominal Enhanced CT[J]. CT Theory and Applications, 2025, 34(3): 359-368. DOI: 10.15953/j.ctta.2025.001
    [5]LIU Kang, YANG Dewu, ZHANG yongxian, LIU dandan, GAI xinghui, CHEN zhaorui, GONG hao, SUI Yan. Impact of Different Scanning Modes and Noise Index on Inner Ear CT Image Quality and Radiation Dose[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.230
    [6]Ma Wentao, Zhang Yongxian, Guo Senlin, Liu Yunfu, Kang Tianliang. Study on the Impact of Different Tube Voltages Combined with Organ Dose Modulation on Cerebral Perfusion Image Quality and Ocular Lens Radiation Dose[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.337
    [7]WANG Chensi, HONG Yao, FANG Huimin, DING Xuelu, YANG Yifan, TIAN Xiangbao, CHEN Wenjing, WANG Yongsheng. Based on the Effect of Different Pitches on Neck CTA Radiation Dose and Image Quality under Automatic Tube Current Modulation Technology[J]. CT Theory and Applications, 2024, 33(3): 309-315. DOI: 10.15953/j.ctta.2023.148
    [8]CHANG Xin, WANG Xu, FENG Chen-lu. The Effect of Axial and Spiral Scan Mode in Emergency Head CT on Image Quality and Radiation Dosage[J]. CT Theory and Applications, 2015, 24(1): 117-122. DOI: 10.15953/j.1004-4140.2015.24.01.14
    [9]BAO Li-wei, WANG Ze-feng, SUN Zhen-ting, MENG Ling-xin, ZHAO Lei. Evaluation of Image Quality and Radiation Dose for Low-tube Voltage Head and Neck CTA[J]. CT Theory and Applications, 2015, 24(1): 87-94. DOI: 10.15953/j.1004-4140.2015.24.01.10
    [10]ZHANG Hai-bo, FU Chuan-ming, CHEN Lun-gang, XU Lin, WANG Kai-hua. Pitch Optimizing Combination of Thoracic and Abdominal CTA Image Quality and Radiation Dose Discussion[J]. CT Theory and Applications, 2012, 21(2): 305-311.
  • Cited by

    Periodical cited type(4)

    1. 张彩云,韩志海. 2024年版肺结节诊治中国专家共识解读. 河北医科大学学报. 2025(04): 373-378 .
    2. 王皓,白卓杰. 基于CT的人工智能技术在肺结节诊断中的应用进展. 中国临床研究. 2025(05): 667-671+676 .
    3. 刘洋,孙旭,王涟. 国内医疗健康领域人工智能研究热点及趋势分析. 中国医药导报. 2024(25): 191-196 .
    4. 康文文,韩贺东,吕镗烽,宋勇. 精准医疗时代下肺癌筛查的难点与对策. 中华结核和呼吸杂志. 2024(12): 1211-1216 .

    Other cited types(1)

Catalog

    Article views (162) PDF downloads (38) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return