Citation: | WANG P Q, YANG B, PENG Z F, et al. Imaging Bone Metastases: Research Progress[J]. CT Theory and Applications, 2025, 34(2): 327-332. DOI: 10.15953/j.ctta.2023.215. (in Chinese). |
Bone is a common site for cancer metastasis, with a higher incidence than primary bone malignancies. As various cancer treatment regimens continue to improve, the five-year survival rate for cancer patients has risen steadily. However, this has also led to an increased likelihood of bone metastasis and skeletal-related events. Timely and accurate diagnosis of bone metastases, along with proper assessment of therapeutic response, is crucial for developing personalized treatment plans and improving patient survival. This paper reviews current imaging examinations for bone metastases, and explores the potential of new imaging techniques for diagnosing tumor-related bone metastases.
[1] |
CECCHINI M G, WETTERWALD A, PLUIJM G V D, et al. Molecular and biological mechanisms of bone metastasis[J]. European Association of Urology Update Series, 2005, (3): 214-226. DOI: 10.1016/j.euus.2005.09.006.
|
[2] |
BUSSARD K M, GAY C V, MASTRO A M. The bone microenvironment in metastasis; What is special about bone?[J]. Cancer Metastasis Reviews, 2008, 27(1). DOI: 10.1007/s10555-007-9109-4.
|
[3] |
COLEMAN R, HADJI P, BODY J J, et al. Bone health in cancer: ESMO clinical practice guidelines[J]. Ann Oncol, 2020, 31(12). DOI: 10.1016/j.annonc.2020.07.019.
|
[4] |
O’SULLIVAN, CARTY F L, CRONIN C G. Imaging of bone metastasis: An update[J]. World Journal of Radiology, 2015, 7(8). DOI: 10.4329/wjr.v7.i8.202.
|
[5] |
YU H H, TSAI Y Y, HOFFE S E. Overview of diagnosis and management of metastatic disease to bone[J]. Cancer Control, 2012, 19(2). DOI: 10.1177/107327481201900202.
|
[6] |
CHOI J, RAGHAVAN M. Diagnostic imaging and image-guided therapy of skeletal metastases[J]. Cancer Control, 2012, 19(2). DOI: 10.1177/107327481201900204.
|
[7] |
MILLER T T. Bone tumors and tumorlike conditions: Analysis with conventional radiography[J]. Radiology, 2008, 246(3). DOI: 10.1148/radiol.2463061038.
|
[8] |
SUN W K, LIU S L, GUO J, et al. A CT-based radiomics nomogram for distinguishing between benign and malignant bone tumours[J]. Cancer Imaging, 2021, 21(1). DOI: 10.1186/s40644-021-00387-6.
|
[9] |
WANG Q, SUN B, MENG X, et al. Density of bone metastatic lesions increases after radiotherapy in patients with breast cancer[J]. Journal of Radiation Research, 2019, 60(3): 394-400. DOI: 10.1093/jrr/rry098.
|
[10] |
ISHIWATA Y, HIEDA Y, KAKI S, et al. Improved diagnostic accuracy of bone metastasis detection by water-hap associated to non-contrast CT[J]. Diagnostics (Basel), 2020, 10(10): 853-864. DOI: 10.3390/diagnostics10100853.
|
[11] |
BÄUERLE T, SEMMLER W. Imaging response to systemic therapy for bone metastases[J]. European Society of Radiology, 2009, 19(10): 2495-2507. DOI: 10.1007/s00330-009-1443-1.
|
[12] |
YANG H L, LIU T, WANG X M, et al. Diagnosis of bone metastases: A meta-analysis comparing 18F-FDG PET, CT, MRI and bone scintigraphy[J]. European Society of Radiology, 2011, 21(12): 2604-2617. DOI: 10.1007/s00330-011-2221-4.
|
[13] |
SADIK M, SUURKULA M, HöGLUND P, et al. Quality of planar whole-body bone scan interpretations: A nationwide survey[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35(8): 1464-1472. DOI: 10.1007/s00259-008-0721-5.
|
[14] |
IMBRIACO M, LASON S M, YEUNG H W, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: The bone scan index[J]. Clinical Cancer Research, 1998, 4(7): 1765-1772.
|
[15] |
WUESTEMANN J, HUPFELD S, KUPITZ D, et al. Analysis of bone scans in various tumor entities using a deep-learning-based artificial neural network algorithm-evaluation of diagnostic performance[J]. Cancers (Basel), 2020, 12(9). DOI: 10.3390/cancers12092654.
|
[16] |
ISODA T, BABA S, MARUOKA Y, et al. Influence of the different primary cancers and different types of bone metastasis on the lesion-based artificial neural network value calculated by a computer-aided diagnostic system, bonenavi, on bone scintigraphy images[J]. Asia Oceania Journal of Nuclear Medicine & Biology, 2017, 5(1). DOI: 10.22038/aojnmb.2016.7606.
|
[17] |
SHIBAHARA I, SAITO R, OSADA Y, et al. Incidence of initial spinal metastasis in glioblastoma patients and the importance of spinal screening using MRI[J]. Journal of Neuro-Oncology, 2019, 141(2). DOI: 10.1007/s11060-018-03036-4.
|
[18] |
PARK S, PARK J G, JUN S, et al. Differentiation of bone metastases from prostate cancer and benign red marrow depositions of the pelvic bone with multiparametric MRI[J]. Magnetic Resonance Imaging, 2020, 73. DOI: 10.1016/j.mri.2020.08.019.
|
[19] |
KUMAR V, GU Y, BASU S, et al. Radiomics: The process and the challenges[J]. Magnetic Resonance Imaging, 2012, 30(9). DOI: 10.1016/j.mri.2012.06.010.
|
[20] |
GUAN Y, PECK K K, JUN S, et al. T1-weighted dynamic contrast-enhanced MRI to differentiate nonneoplastic and malignant vertebral body lesions in the spine[J]. Radiology, 2020, 297(2). DOI: 10.1148/radiol.2020190553.
|
[21] |
SUN G, ZHANG Y X, LIU F, et al. Whole-body magnetic resonance imaging is superior to skeletal scintigraphy for the detection of bone metastatic tumors: A meta-analysis[J]. European Review for Medicaland Pharmacological Sciences, 2020, 24(13): 7240-7252. DOI: 10.26355/eurrev_202007_21879.
|
[22] |
KOSMIN M, PADHANI A R, GOGBASHIAN A, et al. Comparison of whole-body MRI, CT, and bone scintigraphy for response evaluation of cancer therapeutics in metastatic breast cancer to bone[J]. Radiology, 2020, 297(3): 622-629. DOI: 10.1148/RADIOL.2020192683.
|
[23] |
OTTOSSON F, BACO E, LAURITZEN, P M, et al. The prevalence and locations of bone metastases using whole-body MRI in treatment-naïve intermediate- and high-risk prostate cancer[J]. European Radiology, 2021, 31(5): 2747-2753. DOI: 10.1007/s00330-020-07363-x.
|
[24] |
VARGAS H A, SCHOR-BARDACH R, LONG N, et al. Prostate cancer bone metastases on staging prostate MRI: Prevalence and clinical features associated with their diagnosis[J]. Abdominal Radiology (NY), 2017, 42(1): 271-277. DOI: 10.1007/s00261-016-0851-3.
|
[25] |
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: Extracting more information from medical images ssing advanced feature analysis[J]. European Journal of Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
|
[26] |
FILOGRANA L, LENKOWICZ J, CELLINI F, et al. Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: A feasibility study[J]. La Radiologia Medica, 2019, 124(1). DOI: 10.1007/s11547-018-0935-y.
|
[27] |
LANG N, ZHANG Y, ZHANG E L, et al. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI[J]. Magnetic Resonance Imaging, 2019, 64: 4-12. DOI: 10.1016/j.mri.2019.02.013.
|
[28] |
XIONG X, WANG J, HU S, et al. Differentiating between multiple myeloma and metastasis subtypes of lumbar vertebra lesions using machine learning-based radiomics[J]. Frontiers in Oncology, 2021: 601699. DOI: 10.3389/fonc.2021.601699.
|
[29] |
CHEN K, CAO J, ZHANG X, et al. Differentiation between spinal multiple myeloma and metastases originated from lung using multi-view attention-guided network[J]. Frontiers in Oncology, 2022, 12: 981769. DOI: 10.3389/fonc.2022.981769.
|
[30] |
YIN P, MAO N, ZHANG C, et al. A triple-classification radiomics model for the differentiation of primary chordoma, giant cell tumor, and metastatic tumor of sacrum based on T2-weighted and contrast-enhanced T1-weighted MRI[J]. Journal of Magnetic Resonance Imaging, 2019, 49(3): 1-8. DOI: 10.1002/jmri.26238.
|
[31] |
WANG Y R, YU B, ZHONG F, et al. MRI-based texture analysis of the primary tumor for pre-treatment prediction of bone metastases in prostate Cancer[J]. Magnetic Resonance Imaging, 2019, (3): 7-18. DOI: 10.1016/j.mri.2019.03.007.
|
[32] |
JIANG X, REN M, SHUANG X, et al. Multiparametric MRI-based radiomics approaches for preoperative prediction of EGFR mutation status in spinal bone metastases in patients with lung adenocarcinoma[J]. Journal of Magnetic Resonance Imaging, 2021, 54(2): 497-507. DOI: 10.1002/jmri.27579.
|
[33] |
REN M L, YANG H Z, LAI Q Y, et al. MRI-based radiomics analysis for predicting the EGFR mutation based on thoracic spinal metastases in lung adenocarcinoma patients[J]. Medical Physics, 2021, 48(9): 1-10. DOI: 10.1002/mp.15137.
|
[34] |
CAO R, DONG Y, WANG X, et al. MRI-based radiomics nomogram as a potential biomarker to predict the EGFR mutations in exon 19 and 21 based on thoracic spinal metastases in lung adenocarcinoma[J]. Academic Radiology, 2022, 29(3): e9-e17. DOI: 10.1016/j.acra.2021.06.004.
|
[35] |
HAMAOKA T, MADEWELL J E, PODOLOFF D A, et al. Bone imaging in metastatic breast cancer[J]. Journal Clinical Oncology, 2004, 22(14): 2942-2953. DOI: 10.1200/JCO.2004.08.181.
|
[36] |
EVEN-SAPIR E, METSER U I, GENNADY, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT[J]. Journal of Nuclear Medicine, 2006, 47(2): 287-297.
|
[37] |
CUCCURULLO V, CASCINI G L, TAMBURRINI O, et al. Bone metastases radiopharmaceuticals: An overview[J]. Current Radiopharmaceuticals, 2013, 6(1): 41-47. DOI: 10.2174/1874471011306010007.
|
[38] |
BASTAWROUS S, BHARGAVA P, BEHNIA F, et al. Newer PET application with an old tracer: Role of 18F-Naf skeletal PET/CT in oncologic practice[J]. Radiographics, 2014, 34(5): 1295-1316. DOI: 10.1148/rg.345130061.
|
[39] |
WOUTER A M, BROOS, FRISO M, et al. Accuracy of 18F-Naf PET/CT in bone metastasis detection and its effect on patient management in patients with breast carcinoma[J]. Nuclear Medicine Communication, 2018, 39(4): 325-333. DOI: 10.1097/MNM.0000000000000807.
|
[40] |
LEE J W, PARK Y J, JEON Y S, et al. Clinical value of dual-phase F-18 sodium fluoride PET/CT for diagnosing bone metastasis in cancer patients with solitary bone lesion[J]. Quantitative Imaging in Medicine and Surg, 2020, 10(11): 2098-2111. DOI: 10.21037/qims-20-607.
|
[41] |
HEIDENREICH A, BASTIAN P J, BELLMUNT J, et al. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent-update 2013[J]. European Urology, 2014, 65(1): 124-137. DOI: 10.1016/j.eururo.2013.09.046.
|
[42] |
AFSHAR-OROMIEH A, HOLLAND-LETZ T, GIESEL F L, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: Evaluation in 1007 patients[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44(8): 1258-1268. DOI: 10.1007/s00259-017-3711-7.
|
[43] |
JANSSEN J C, MEISSNER S, WOYTHAL N, et al. Comparison of hybrid 68Ga-PSMA-PET/CT and 99mTc-DPD-SPECT/CT for the detection of bone metastases in prostate cancer patients: Additional value of morphologic information from low dose CT[J]. European Radiology, 2018, 28(2): 610-619. DOI: 10.1007/s00330-017-4994-6.
|
[44] |
WU J, WANG Y, LIAO T, et al. Comparison of the relative diagnostic performance of [68G9]Ga-DOTA-FAPI-04 and 18F-FDG PET/CT for the detection of bone metastasis in patients with different cancers[J]. Frontiers in Oncology, 2021, 11(0): 737827. DOI: 10.3389/fonc.2021.737827.
|
[45] |
CATALANO O A, NICOLAI E, ROSEN B R, et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients[J]. British Journal of Cancer, 2015, 112(9): 1452-1460. DOI: 10.1038/bjc.2015.112.
|
[46] |
QIAO Z Y, WANG S D, WANG H Y, et al. Diagnostic capability of 18F-PSMA PET-MRI and pelvic MRI plus bone scan in treatment-naive prostate cancer: A single-center paired validating confirmatory study[J]. International Journal of Surgery, 2024, 110(1): 87-94. DOI: 10.1097/JS9.0000000000000787.
|
[47] |
ÇELEBI F. What is the diagnostic performance of 18F-FDG-PET/MRI in the detection of bone metastasis in patients with breast cancer?[J]. European Journal of Breast Health, 2019, 15(4): 213-216. DOI: 10.5152/ejbh.2019.4885.
|