Citation: | ZHANG Y, LIN X L, NIE P. Advances in Imaging Studies for Assessing Epicardial Adipose Tissue[J]. CT Theory and Applications, 2025, 34(1): 1-7. DOI: 10.15953/j.ctta.2024.196. (in Chinese). |
Epicardial adipose tissue (EAT) is situated adjacent to the myocardium and coronary arteries and closely associated with the occurrence and progression of various cardiovascular diseases, including coronary artery disease (CAD), atrial fibrillation (AFib), and heart failure (HF). Ultrasound, computed tomography (CT), magnetic resonance (MR), and artificial intelligence (AI) have enabled the quantitative assessment of EAT, thus aiding in the precision diagnosis and risk stratification of cardiovascular diseases. This review discusses the anatomy and physiological functions of EAT, its correlation with cardiovascular diseases, and current multimodality imaging research with the aim of providing references for further in-depth imaging and future clinical studies of EAT.
[1] |
CHHABRA L, GURUKRIPA KOWLGI N. Cardiac adipose tissue: Distinction between epicardial and pericardial fat remains important[J]. International Journal of Cardiology, 2015, 201: 274-275. DOI: 10.1016/j.ijcard.2015.08.068.
|
[2] |
LI C, LIU X, ADHIKARI B K, et al. The role of epicardial adipose tissue dysfunction in cardiovascular diseases: An overview of pathophysiology, evaluation, and management[J]. Frontiers in Endocrinology, 2023, 14. DOI: 10.3389/fendo.2023.1167952.
|
[3] |
MONTI C B, CODARI M, de CECCO C N, et al. Novel imaging biomarkers: Epicardial adipose tissue evaluation[J]. The British Journal of Radiology, 2020, 93(1113). DOI: 10.1259/bjr.20190770.
|
[4] |
DOUKBI E, SOGHOMONIAN A, SENGENèS C, et al. Browning epicardial adipose tissue: Friend or foe?[J]. Cells, 2022, 11(6). DOI: 10.3390/cells11060991.
|
[5] |
MONTI C B, CODARI M, de CECCO C N, et al. Novel imaging biomarkers: Epicardial adipose tissue evaluation[J]. British Journal of Radiology, 2020, 93(1113): 20190770. DOI: 10.1259/bjr.20190770.
|
[6] |
IACOBELLIS G. Epicardial adipose tissue in contemporary cardiology[J]. Nature Reviews Cardiology, 2022, 19(9): 593-606. DOI: 10.1038/s41569-022-00679-9.
|
[7] |
SAWA Y, MATSUSHITA N, SATO S, et al. Chronic HDAC6 activation induces atrial fibrillation through atrial electrical and structural remodeling in transgenic mice[J]. International Heart Journal, 2021, 62(3): 616-626. DOI: 10.1536/ihj.20-703.
|
[8] |
WANG Q, XI W, YIN L, et al. Human Epicardial adipose tissue cTGF expression is an independent risk factor for atrial fibrillation and highly associated with atrial fibrosis[J]. Scientific Reports, 2018, 8(1). DOI: 10.1038/s41598-018-21911-y.
|
[9] |
BERMAN D S, LIN A. Artificial intelligence for assessment of epicardial adipose tissue on coronary CT angiography[J]. Journal of the American College of Cardiology: Cardiovascular Imaging, 2023, 16(6): 817-819. DOI: 10.1016/j.jcmg.2022.12.004.
|
[10] |
HAO S, ZHANG J, PEI Y, et al. Complement factor D derived from epicardial adipose tissue participates in cardiomyocyte apoptosis after myocardial infarction by mediating PARP-1 activity[J]. Cellular Signalling, 2023, 101. DOI: 10.1016/j.cellsig.2022.110518.
|
[11] |
PARISI V, PETRAGLIA L, FORMISANO R, et al. Validation of the echocardiographic assessment of epicardial adipose tissue thickness at the Rindfleisch fold for the prediction of coronary artery disease[J]. Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30(1): 99-105. DOI: 10.1016/j.numecd.2019.08.007.
|
[12] |
CHIN J F, AGA Y S, ABOU KAMAR S, et al. Association between epicardial adipose tissue and cardiac dysfunction in subjects with severe obesity[J]. European Journal of Heart Failure, 2023, 25(11): 1936-1943. DOI: 10.1002/ejhf.3011.
|
[13] |
VERMA B, KATYAL D, PATEL A, et al. Relation of systolic and diastolic epicardial adipose tissue thickness with presence and severity of coronary artery disease (The EAT CAD study)[J]. Journal of Family Medicine and Primary Care, 2019, 8(4). DOI: 10.4103/jfmpc.jfmpc_194_19.
|
[14] |
YAMAGUCHI S, OTAKI Y, TAMARAPPOO B, et al. The association between epicardial adipose tissue thickness around the right ventricular free wall evaluated by transthoracic echocardiography and left atrial appendage function[J]. The International Journal of Cardiovascular Imaging, 2020, 36(4): 585-593. DOI: 10.1007/s10554-019-01748-w.
|
[15] |
OKA T, YAMAMOTO H, OHASHI N, et al. Association between epicardial adipose tissue volume and characteristics of non-calcified plaques assessed by coronary computed tomographic angiography[J]. International Journal of Cardiology, 2012, 161(1): 45-49. DOI: 10.1016/j.ijcard.2011.04.021.
|
[16] |
BRANDT V, DECKER J, SCHOEPF U J, et al. Additive value of epicardial adipose tissue quantification to coronary CT angiography–derived plaque characterization and CT fractional flow reserve for the prediction of lesion-specific ischemia[J]. European Radiology, 2022, 32(6): 4243-4252. DOI: 10.1007/s00330-021-08481-w.
|
[17] |
STOJANOVSKA J, KAZEROONI E A, SINNO M, et al. Increased epicardial fat is independently associated with the presence and chronicity of atrial fibrillation and radiofrequency ablation outcome[J]. European Society of Radiology, 2015, 25: 2298-2309. DOI: 10.1007/s00330-015-3643-1.
|
[18] |
YANG M, BAO W, XU Z, et al. Association between epicardial adipose tissue and recurrence of atrial fibrillation after ablation: A propensity score-matched analysis[J]. The International Journal of Cardiovascular Imaging, 2022, 38(8): 1865-1872. DOI: 10.1007/s10554-022-02557-4.
|
[19] |
YANG C D, QUAN J W, TAY G P, et al. Epicardial adipose tissue volume and density are associated with heart failure with improved ejection fraction[J]. Cardiovascular Diabetology, 2024, 23(1). DOI: 10.1186/s12933-024-02376-y.
|
[20] |
MADONNA ROSALINDA M, SCODITTI E, PESCETELLI IRENE, DE CATERINA RAFFAELE. The epicardial adipose tissue and the coronary arteries dangerous liaisons[J]. Cardiovascular Research, 2019. DOI: 10.1093/cvr/cvz062/5418532.
|
[21] |
刘静, 彭礼清. 心外膜脂肪组织定量评价的影像学进展[J]. 心血管病学进展, 2020, 41(9): 922-925. DOI: 10.16806/j.cnki.issn.1004-3934.2020.09.009.
LIU J, PENG L Q. Quantitative evaluation of epicardial adipose tissue measured by different imaging methods[J]. Advances in Cardiovascular Diseases, 2020, 41(9): 922-925. DOI:10.16806/j.cnki.issn.1004-3934.2020.09.009. (in Chinese).
|
[22] |
SALARI R, BALLARD D H, HOEGGER M J, et al. Fat-only Dixon: How to use it in body MRI[J]. Abdominal Radiology, 2022, 47(7): 2527-2544. DOI: 10.1007/s00261-022-03546-w.
|
[23] |
李雁鸣, 沈成兴, 申锷. 心外膜脂肪组织与心血管疾病的研究进展[J]. 中华心血管病杂志, 2022, 50(7): 723-727. DOI: 10.3760/cma.j.cn112148-20220527-00417.
LI Y M, SHEN C X, SHEN E. Research progress on the function of epicardial adipose tissue and the association with cardiovascular diseases[J]. Chinese Journal of Cardiology, 2022, 50(7): 723-727. DOI: 10.3760/cma.j.cn112148-20220527-00417. (in Chinese).
|
[24] |
ANTONOPOULOS A S, ANTONIADES C. Cardiac magnetic resonance imaging of epicardial and intramyocardial adiposity as an early sign of myocardial disease[J]. Circulation: Cardiovascular Imaging, 2018, 11(8). DOI: 10.1161/circimaging.118.008083.
|
[25] |
ZHAO J, CHENG W, DAI Y, et al. Excessive accumulation of epicardial adipose tissue promotes microvascular obstruction formation after myocardial ischemia/reperfusion through modulating macrophages polarization[J]. Cardiovascular Diabetology, 2024, 23(1). DOI: 10.1186/s12933-024-02342-8.
|
[26] |
NAKAMORI S, NEZAFAT M, NGO L H, et al. Left atrial epicardial fat volume is associated with atrial fibrillation: A prospective cardiovascular magnetic resonance 3D dixon study[J]. Journal of the American Heart Association, 2018, 7(6). DOI: 10.1161/jaha.117.008232.
|
[27] |
Van WOERDEN G, Van VELDHUISEN D J, MANINTVELD O C, et al. Epicardial adipose tissue and outcome in heart failure with mid-range and preserved ejection fraction[J]. Circulation: Heart Failure, 2022, 15(3). DOI: 10.1161/circheartfailure.121.009238.
|
[28] |
COMMANDEUR F, GOELLER M, BETANCUR J, et al. Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT[J]. IEEE Transactions on Medical Imaging, 2018, 37(8): 1835-1846. DOI: 10.1109/tmi.2018.2804799.
|
[29] |
MOLNAR D, ENQVIST O, ULéN J, et al. Artificial intelligence based automatic quantification of epicardial adipose tissue suitable for large scale population studies[J]. Scientific Reports, 2021, 11(1). DOI: 10.1038/s41598-021-03150-w.
|
[30] |
CHENG N, TAN E W P, LENG S, et al. Performance of ensemble of UNets for epicardial adipose tissue quantification: A multi-center APOLLO study[J]. European Heart Journal, 2023, 44(S2). DOI: 10.1093/eurheartj/ehad655.1255.
|
[31] |
CHENG N, TAN E W P, LENG S, et al. Machine learning accurately quantifies epicardial adipose tissue from non-contrast CT images in coronary artery disease[J]. European Heart Journal, 2023.
|
[32] |
RäMö J T, KANY S, HOU C R, et al. Cardiovascular significance and genetics of epicardial and pericardial adiposity[J]. The Journal of the American Medical Association: Cardiology, 2024, 9(5). DOI: 10.1001/jamacardio.2024.0080.
|
[33] |
WEST H W, SIDDIQUE M, WILLIAMS M C, et al. Deep-learning for epicardial adipose tissue assessment with computed tomography[J]. Journal of the American College of Cardiology: Cardiovascular Imaging, 2023, 16(6): 800-816. DOI: 10.1016/j.jcmg.2022.11.018.
|
[34] |
EISENBERG E, MCELHINNEY P A, COMMANDEUR F, et al. Deep learning–based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects[J]. Circulation: Cardiovascular Imaging, 2020, 13(2). DOI: 10.1161/circimaging.119.009829.
|
[35] |
MILLER R J H, SHANBHAG A, KILLEKAR A, et al. AI-derived epicardial fat measurements improve cardiovascular risk prediction from myocardial perfusion imaging[J]. NPJ Digital Medicine, 2024, 7(1). DOI: 10.1038/s41746-024-01020-z.
|