ISSN 1004-4140
CN 11-3017/P
WANG Lingyun, ZHANG Yang, CHEN Yong, GE Yingqian, XU Zhihan, TAN Jingwen, WANG Lan, DU Lianjun, PAN Zilai, PAN Zhaocheng. Clinical Value of Applying Dual-energy CT Radio-mics Model to Evaluate Serosal Invasion of Advanced Gastric Cancer after Neoadjuvant Chemotherapy Treatment[J]. CT Theory and Applications, 2021, 30(5): 591-602. DOI: 10.15953/j.1004-4140.2021.30.05.07
Citation: WANG Lingyun, ZHANG Yang, CHEN Yong, GE Yingqian, XU Zhihan, TAN Jingwen, WANG Lan, DU Lianjun, PAN Zilai, PAN Zhaocheng. Clinical Value of Applying Dual-energy CT Radio-mics Model to Evaluate Serosal Invasion of Advanced Gastric Cancer after Neoadjuvant Chemotherapy Treatment[J]. CT Theory and Applications, 2021, 30(5): 591-602. DOI: 10.15953/j.1004-4140.2021.30.05.07

Clinical Value of Applying Dual-energy CT Radio-mics Model to Evaluate Serosal Invasion of Advanced Gastric Cancer after Neoadjuvant Chemotherapy Treatment

More Information
  • Received Date: December 12, 2020
  • Available Online: September 22, 2021
  • Objective: We intend to evaluate the diagnostic efficacy of dual-energy CT radio-mics model based on Iodine Map (IM) in the application of preoperative re-staging of serosal invasion in locally advanced gastric cancer (LAGC) after neoadjuvant chemotherapy (NAC) treatment. Methods: A retrospective study was conducted on 155 patients with LAGC who were treated with standard NAC before operation (including 110 cases in training group and 45 cases in testing group). Two radiologists analyzed all the CT images and carried out the classification. After the semi-automatic drawing of region of interest volume (VOI), we extracted 1226 imaging features from each lesion based respectively on IM and 120kVp images. We adopted Spearman related analysis, Least Absolute Shrinkage and Selection Operator (LASSO) to punish Logistic regression in order to acquire important feature by getting rid of unstable and redundant features. Through multi-factor Logistic regression analysis, we established two prediction models (120kVp and IM-120kVp) based on the features selected respectively by 120kVp and 120kVp combined with IM. Results: Two radio-mics models both showed great prediction accuracy and efficiency in training and testing groups (IM-120kVp: AUC: training group, 0.953, testing group, 0.879; 120kVp: AUC: training group, 0.940, testing group, 0.831). The diagnostic accuracy of both models in the testing group (IM-120kVp: 84.4%, 120kVp: 80.0%) were higher than manual classification (68.9%). The diagnostic efficacy of IM-120kVp model was better than manual classification both in training (P<0.001) and testing groups (P=0.034). Conclusion: The radio-mics model based on dual-energy CT shows convincing diagnostic efficacy in differentiating serosal invasion in preoperative re-staging for LAGC patients after NAC treatment.
  • [1]
    BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:A Cancer Journal for Clinicians, 2018, 68(6):394-424. DOI: 10.3322/caac.21492.
    [2]
    POH A R, O'DONOGHUE R J, ERNST M, et al. Mouse models for gastric cancer:Matching models to biological questions[J]. Journal of Gastroenterology and Hepatology, 2016, 31(7):1257-1272. DOI: 10.1111/jgh.13297.
    [3]
    YCHOU M, BOIGE V, PIGNON J P, et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma:An FNCLCC and FFCD multicenter phase Ⅲ trial[J]. Journal of Clinical Oncology, 2011, 29(13):1715-1721. DOI: 10.1200/jco.2010.33.0597.
    [4]
    VAN HAGEN P, HULSHOF M, VAN LANSCHOT J, et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer[J]. The New England Journal of Medicine, 2012, 366:11. DOI: 10.1056/NEJMoa1112088.
    [5]
    SIEWERT J R, BÖTTCHER K, STEIN H J, et al. Relevant prognostic factors in gastric cancer ten-year results of the german gastric cancer study[J]. Annals of Surgery, 1998, 228(4):449-461. DOI: 10.1097/00000658-199810000-00002.
    [6]
    WANG H H, HUANG J Y, WANG Z N, et al. Macroscopic serosal classification as a prognostic index in radically resected stage pt3-pt4b gastric cancer[J]. Annals of Surgical Oncology, 2016, 23(1):149-155. DOI: 10.1245/s10434-015-4656-3.
    [7]
    CHIAO-YUN C, WU D, KANG W, et al. Dynamic contrast-enhanced ultrasound of gastric cancer correlation with gastric cancer on computed tomography[J]. Radiology, 2007, 242(11):472-482. DOI: 10.1148/radiol.2422051557.
    [8]
    ZHENG Z, YU Y, LU M, et al. Double contrast-enhanced ultrasonography for the preoperative evaluation of gastric cancer:A comparison to endoscopic ultrasonography with respect to histopathology[J]. American Journal of Surgery, 2011, 202(5):605-611. DOI:10.1016/j. amjsurg.2010.09.033.
    [9]
    WANG J Y, HSIEH J S, HUANG Y S, et al. Endoscopic ultrasonography for preoperative locoregional staging and assessment of resectability in gastric cancer[J]. Clinical Imaging, 1998, 22(5):355-359. DOI: 10.1016/S0899-7071(98)00033-3.
    [10]
    AHN H S, LEE H J, YOO M W, et al. Diagnostic accuracy of T and N stages with endoscopy, stomach protocol CT, and endoscopic ultrasonography in early gastric cancer[J]. Journal of Surgical Oncology, 2009, 99(1):20-27. DOI: 10.1002/jso.21170.
    [11]
    PARK S R, LEE J S, KIM C G, et al. Endoscopic ultrasound and computed tomography in restaging and predicting prognosis after neoadjuvant chemotherapy in patients with locally advanced gastric cancer[J]. Cancer, 2008, 112(11):2368-2376. DOI: 10.1002/cncr.23483.
    [12]
    YOSHIKAWA T, TANABE K, NISHIKAWA K, et al. Accuracy of CT staging of locally advanced gastric cancer after neoadjuvant chemotherapy:Cohort evaluation within a randomized phase Ⅱ study[J]. Annals of Surgical Oncology, 2014, 21(S3):S385-389. DOI: 10.1245/s10434-014-3615-8.
    [13]
    GRASER A, JOHNSON T R, CHANDARANA H, et al. Dual energy CT:Preliminary observations and potential clinical applications in the abdomen[J]. European Radiology, 2009,19(1):13-23. DOI: 10.1007/s00330-008-1122-7.
    [14]
    CHEN X, XU Y, DUAN J, et al. Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer[J]. Medicine (Baltimore), 2017, 96(28):e7479. DOI: 10.1097/MD.0000000000007479.
    [15]
    MARCON J, GRASER A, HORST D, et al. Papillary vs clear cell renal cell carcinoma. Differentiation and grading by iodine concentration using DECT-Correlation with microvascular density[J]. European Radiology, 2020, 30:1-10. DOI:10.1007/s00330-019- 06298-2.
    [16]
    SATO K, MOROHASHI H, TSUSHIMA F, et al. Dual energy CT is useful for the prediction of mesenteric and lateral pelvic lymph node metastasis in rectal cancer[J]. Molecular and Clinical Oncology, 2019, 10(6):625-630. DOI: 10.3892/mco.2019.1834.
    [17]
    TANG L, LI Z Y, LI Z W, et al. Evaluating the response of gastric carcinomas to neoadjuvant chemotherapy using iodine concentration on spectral CT:A comparison with pathological regression[J]. Clinical Radiology, 2015, 70(11):1198-204. DOI: 10.1016/j.crad.2015.06.083.
    [18]
    AVANZO M, STANCANELLO J, EL NAQA I. Beyond imaging:The promise of radiomics[J]. Physicia Medica, 2017, 38:122-139. DOI: 10.1016/j.ejmp.2017.05.071.
    [19]
    HUANG Y Q, LIANG C H, HE L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. Journal of Clinical Oncology, 2016, 34(18):2157-2164. DOI: 10.1200/JCO.2015.65.9128.
    [20]
    XU X, ZHANG H L, LIU Q P, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. Journal of Hepatology, 2019, 70(6):1133-1144. DOI: 10.1016/j.jhep.2019.02.023.
    [21]
    XU X, ZHANG H L, LIU Q P. Texture analysis in cerebral gliomas:A review of the literature[J]. American Journal of Neuroradiology, 2019, 40(6):928-934. DOI: 10.3174/ajnr.A6075.
    [22]
    CUNNINGHAM D, ALLUM W H, STENNING S P, et al. Perioperative Chemotherapy versus Surgery Alone for Resectable Gastroesophageal Cancer[J]. The New England Journal of Medicine, 2006, 355(1):11-20. DOI: 10.1056/NEJMoa055531.
    [23]
    SANO T, AIKO T. New Japanese classifications and treatment guidelines for gastric cancer:Revision concepts and major revised points[J]. Gastric Cancer. 2011, 14(2):97-100. DOI:10.1007/s10120-011-0040-6. PMID:21573921.
    [24]
    Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014(ver. 4)[J]. Gastric Cancer 2017, 20:1-19. https://doi.org/10.1007/s10120-016-0622-4.
    [25]
    AMIN M B, GREENE F L, EDGE S B, et al. The Eighth Edition AJCC Cancer Staging Manual:Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging[J]. CA:A Cancer Journal for Clinicians, 2017, 67(2):93-99. DOI: 10.3322/caac.21388.
    [26]
    GAO X, ZHANG Y, YUAN F, et al. Locally advanced gastric cancer:Total iodine uptake to predict the response of primary lesion to neoadjuvant chemotherapy[J]. Journal of Cancer Research and Clinical Oncology, 2018, 144(11):2207-2218. DOI: 10.1007/s00432-018-2728-z.
    [27]
    ALBRECHT M H, TROMMER J, WICHMANN J L, et al. Comprehensive comparison of virtual monoenergetic and linearly blended reconstruction techniques in third-generation dual-source dual-energy computed tomography angiography of the thorax and abdomen[J]. Investigative Radiology, 2016, 51(9):582-590. DOI: 10.1097/RLI.0000000000000272.
    [28]
    SOFUE K, ITOH T, TAKAHASHI S, et al. Quantification of cisplatin using a modified 3-material decomposition algorithm at third-generation dual-source dual-energy computed tomography:An experimental study[J]. Investigative Radiology, 2018, 53(11):673-680. DOI: 10.1097/RLI.0000000000000491.
    [29]
    HABERMANN C R, WEISS F, RIECKEN R, et al. Preoperative staging of gastric adenocarcinoma:Comparison of helical CT and endoscopic US[J]. Radiology, 2004, 230:465-471. DOI: 10.1148/radiol.2302020828.
    [30]
    HASEGAWA S, YOSHIKAWA T, SHIRAI J, et al. A prospective validation study to diagnose serosal invasion and nodal metastases of gastric cancer by multidetector-row CT[J]. Annals of Surgical Oncology, 2013, 20(6):2016-2022. DOI: 10.1245/s10434-012-2817-1.
    [31]
    WELS MG, LADES F, MUEHLBERG A, et al. General purpose radiomics for multi-modal clinical research[DB/OL]. Proceedings Volume 10950, Medical Imaging 2019. https://doi.org/10.1117/12.2511856.
    [32]
    ZWANENBURG A, LEGER S, VALLIÈRESM, LÖCK S. Image biomarker standardization initiative[J]. ArXiv Prepr arXiv:161207003. 2019. DOI: 10.17195/candat.2016.08.1.
    [33]
    HUANG Y, LIU Z, HE L, et al. Radiomics signature:A potential biomarker for the prediction of disease-free survival in early-stage (I or Ⅱ) non-small cell lung cancer[J]. Radiology, 2016, 281(3):947-957. DOI: 10.1148/radiol.2016152234.
    [34]
    KIYABU M, LEICHMAN L, CHANDRASOMA. Effects of preoperative chemotherapy on gastric adenocarcinomas:A morphologic study of 25 cases[J]. Cancer, 1992, 70:2239-2245. DOI: 10.1002/1097-0142(19921101).
    [35]
    KIM T U, KIM S, LEE J W, et al. MDCT features in the differentiation of T4a gastric cancer from less-advanced gastric cancer:Significance of the hyperattenuating serosa sign[J]. The British Journal of Radiology, 2013, 86(1029):20130290. DOI: 10.1259/bjr.20130290.
    [36]
    LIU S, SHI H, JI C, et al. Preoperative CT texture analysis of gastric cancer:Correlations with postoperative TNM staging[J]. Clinical Radiology, 2018, 73(8):756. e1-756, e9. DOI: 10.1016/j.crad.2018.03.005.
    [37]
    AGRAWAL M D, KULKARNI N M, HAHN P F, et al. Oncologic applications of dual energy CT in the abdomen[J]. Radiographics a Review Publication of the Radiological Society of North America Inc, 2014, 34(3):589. DOI: 10.1148/rg.343135041.
    [38]
    JIANG C, YANG P, LEI J, et al. the application of iodine quantitative information obtained by dual-source dual-energy computed tomography on chemoradiotherapy effect monitoring for cervical cancer:A preliminary study[J]. Journal of Computer Assisted Tomography, 2017, 41(5):737-745. DOI: 10.1097/RCT.0000000000000603.
    [39]
    BAXA J, MATOUSKOVA T, KRAKOROVA G, et al. Dual-phase dual-energy CT in patients treated with erlotinib for advanced non-small cell lung cancer:Possible benefits of iodine quantification in response assessment[J]. European Radiology, 2016, 26(8):2828-2836. DOI:10.1007/s00330- 015-4092-6.
    [40]
    ZHANG L, TONG Y, ZHANG X, et al. Arsenic sulfide combined with JQ1, chemotherapy agents, or celecoxib inhibit gastric and colon cancer cell growth[J]. Drug Design Development and Therapy, 2015, 9:5851-5862. DOI: 10.2147/DDDT.S92943.
    [41]
    Giganti F, Antunes S, Salerno A, et al. Gastric cancer:Texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker[J]. European Radiology, 2017, 27(5):1831-1839. DOI: 10.1007/s00330-016-4540-y.
    [42]
    CHENG N, HSIEH C, LIAO C, et al. Prognostic value of tumor heterogeneity and SUVmax of pretreatment 18F-FDG PET/CT for salivary gland carcinoma with high-risk histology[J]. Clinical Nuclear Medicine, 2019, 44(5):351-358. DOI: 10.1097/RLU.0000000000002530.
    [43]
    BURRELL R, MCGRANAHAN N, BARTEK J, et al. The causes and consequences of genetic heterogeneity in cancer evolution[J]. Nature, 2013, 501(7467):338-345. DOI: 10.1038/nature12625.
    [44]
    BROCK C, HUANG S. Non-genetic heterogeneity:A mutation-independent driving force for the somatic evolution of tumours[J]. Nature Reviews Genetics, 2009, 10(5):336-342.
    [45]
    YANG F, YOUNG P, GRIGSBY P. Predictive value of standardized intratumoral metabolic heterogeneity in locally advanced cervical cancer treated with chemoradiation[J]. International Journal of Gynecological Cancer Official Journal of the International Gynecological Cancer Society, 2016, 26(4):777.

  • Related Articles

    [1]FENG Han, XIE Mingguo. Application Advancements of Radiomics in Predicting the Prognosis of Patients with Gastric Cancer[J]. CT Theory and Applications, 2025, 34(4): 714-719. DOI: 10.15953/j.ctta.2024.040
    [2]LI Manman, FU Yigang, XIAO Yong, CHEN Wang, FENG Feng, XU Guodong. CT Radiomics Nomogram Prediction for Tumor Deposits and Prognosis in Colorectal Cancer[J]. CT Theory and Applications, 2025, 34(4): 694-702. DOI: 10.15953/j.ctta.2024.055
    [3]LIU Xin, WANG Yuesu, QIN Huilin, ZHANG Xiaoming, CHEN Tianwu. Models Developed Based on Baseline Gastric Cancer and Metastatic Lymph Node CT Radiomics and Clinical Features for Predicting Early Postoperative Lymph Node Recurrence[J]. CT Theory and Applications, 2025, 34(2): 273-284. DOI: 10.15953/j.ctta.2024.276
    [4]XU Guodong, CHEN Wang, XIAO Yong, FU Yigang, WANG Manman, Li Manman. Prediction of postoperative disease-free survival in stage I–III colorectal cancer using a CT-based radiomics nomogram[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.043
    [5]CHEN Xiao, YANG Bin. The Application of Radiomics in the Prognosis of Non-small Cell Lung Cancer[J]. CT Theory and Applications, 2024, 33(3): 385-390. DOI: 10.15953/j.ctta.2023.071
    [6]ZHOU Hui, FENG Feng. Enhancing Esophageal Cancer Prognosis and Treatment Evaluation: Recent Advances in Computed Tomography Radiomics[J]. CT Theory and Applications, 2024, 33(3): 377-383. DOI: 10.15953/j.ctta.2023.155
    [7]WANG Shan, ZHAO Jianhua. Research Progress in Imaging Radiomics Based on Computed Tomography and Magnetic Resonance in Ischemic Stroke[J]. CT Theory and Applications, 2024, 33(1): 83-89. DOI: 10.15953/j.ctta.2023.080
    [8]CHENG Changfa, CHEN Huilin, ZHAI Yanan, GUO Shunlin. Advances in Radiomics for Predicting Intraoperative Hemodynamic Instability in Pheochromocytoma Surgery[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.248
    [9]LIU Yuting, LIU Aishi. Research Progress of Radiomics in the Diagnosis of Pulmonary Nodules[J]. CT Theory and Applications, 2023, 32(4): 573-578. DOI: 10.15953/j.ctta.2022.056
    [10]ZHOU Jianwen, FENG Feng. Research Progress on CT Radiomics of Esophageal Cancer[J]. CT Theory and Applications, 2022, 31(5): 687-696. DOI: 10.15953/j.ctta.2021.006

Catalog

    Article views (486) PDF downloads (46) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return