ISSN 1004-4140
CN 11-3017/P
WANG Z T, MAO T Y, ZHANG X, et al. Coded aperture computed tomography via generative adversarial U-net[J]. CT Theory and Applications, 2022, 31(3): 317-327. DOI: 10.15953/j.ctta.2021.070. (in Chinese).
Citation: WANG Z T, MAO T Y, ZHANG X, et al. Coded aperture computed tomography via generative adversarial U-net[J]. CT Theory and Applications, 2022, 31(3): 317-327. DOI: 10.15953/j.ctta.2021.070. (in Chinese).

Coded Aperture Computed Tomography Via Generative Adversarial U-net

More Information
  • Received Date: December 19, 2021
  • Accepted Date: February 24, 2022
  • Available Online: March 09, 2022
  • Published Date: May 22, 2022
  • Generative adversarial U-net for coded aperture computed tomography (CT) is proposed in this paper to alleviate the tradeoff between the non-continuous sparse projections and the ill-posedness iterative reconstruction problem. A non-continuous sparse projection model is presented based on generative adversarial U-net and the corresponding joint penalty function is formulated. Simulations using real datasets show that CT images with 256×256 pixels can be reconstructed with peak signal-to-noise ration more than 30 dB at only 5% transmittance. Furthermore, the computational time in the reconstructions is reduced by two orders of magnitude when compared with the state-of-the-art iterative algorithms in coded aperture computed tomography.
  • [1]
    KALENDER W A. Computed tomography: Fundamentals, system technology, image quality, applications[M]. John Wiley & Sons, 2011.
    [2]
    KALENDER W A. X-ray computed tomography[J]. Physics in Medicine & Biology, 2006, 51(13): R29.
    [3]
    WILLEMINK M J, PERSSON M, POURMORTEZA A, et al. Photon-counting CT: Technical principles and clinical prospects[J]. Radiology, 2018, 289(2): 293−312. doi: 10.1148/radiol.2018172656
    [4]
    FUCHS T, KACHELRIE M, KALENDER W A. Technical advances in multi-slice spiral CT[J]. European Journal of Radiology, 2000, 36(2): 69−73. doi: 10.1016/S0720-048X(00)00269-2
    [5]
    ZHU Z, WAHID K, BABYN P, et al. Improved compressed sensing-based algorithm for sparse-view CT image reconstruction[J]. Computational and Mathematical Methods in Medicine, 2013: 185750:1−185750:15.
    [6]
    MCCOLLOUGH C H, LENG S, YU L, et al. CT dose index and patient dose: They are not the same thing[J]. Radiology, 2011, 259(2): 311−316. doi: 10.1148/radiol.11101800
    [7]
    CHOI K, BRADY D J. Coded aperture computed tomography[C]//International Society for Optics and Photonics. Adaptive Coded Aperture Imaging, Non-Imaging, and Unconventional Imaging Sensor Systems. 2009, 7468: 74680B.
    [8]
    JEREZ A, MARQUEZ M, ARGUELLO H. Adaptive coded aperture design for compressive computed tomography[J]. Journal of Computational and Applied Mathematics, 2021, 384: 113174. doi: 10.1016/j.cam.2020.113174
    [9]
    ZHANG T, ZHAO S, MA X, et al. Nonlinear reconstruction of coded spectral X-ray CT based on material decomposition[J]. Optics Express, 2021, 29(13): 19319−19339. doi: 10.1364/OE.426732
    [10]
    YAN K, LI D, HOLMGREN A, et al. Compressed sampling strategies for tomography[J]. Journal of the Optical Society of America A, 2014, 31(7): 1369−1394. doi: 10.1364/JOSAA.31.001369
    [11]
    ZHAO Q, MA X, CUADROS A, et al. Single-snapshot X-ray imaging for nonlinear compressive tomosynthesis[J]. Optics Express, 2020, 28(20): 29390−29407. doi: 10.1364/OE.392054
    [12]
    TZOUMAS S, VERNEKOHL D, XING L. Coded-aperture compressed sensing X-ray luminescence tomography[J]. IEEE Transactions on Biomedical Engineering, 2017, 65(8): 1892−1895.
    [13]
    MOJICA E, PERTUZ S, ARGUELLO H. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors[J]. Optics Communications, 2017, 404: 103−109. doi: 10.1016/j.optcom.2017.06.053
    [14]
    CUADROS A, MA X, ARCE G R. Compressive spectral X-ray tomography based on spatial and spectral coded illumination[J]. Optics Express, 2019, 27(8): 10745−10764. doi: 10.1364/OE.27.010745
    [15]
    CUADROS A P, MA X, RESTREPO C M, et al. Static code CT: Single coded aperture tensorial X-ray CT[J]. Optics Express, 2021, 29(13): 20558−20576. doi: 10.1364/OE.427382
    [16]
    CUADROS A P, LIU X, PARSONS P E, et al. Experimental demonstration and optimization of X-ray static code CT[J]. Applied Optics, 2021, 60(30): 9543−9552. doi: 10.1364/AO.438727
    [17]
    MA X, YUAN X, FU C, et al. LED-based compressive spectral-temporal imaging[J]. Optics Express 2021, 29(7): 10698-10715.
    [18]
    CUADROS A P, ARCE G R. Coded aperture optimization in compressive X-ray tomography: A gradient descent approach[J]. Optics Express, 2017, 25(20): 23833−23849. doi: 10.1364/OE.25.023833
    [19]
    CUADROS A P, PEITSCH C, ARGUELLO H, et al. Coded aperture optimization for compressive X-ray tomosynthesis[J]. Optics Express, 2015, 23(25): 32788−32802. doi: 10.1364/OE.23.032788
    [20]
    MEJIA Y, ARGUELLO H. Binary codification design for compressive imaging by uniform sensing[J]. IEEE Transactions on Image Processing, 2018, 27(12): 5775−5786. doi: 10.1109/TIP.2018.2857445
    [21]
    MAO T, CUADROS A P, MA X, et al. Fast optimization of coded apertures in X-ray computed tomography[J]. Optics Express, 2018, 26(19): 24461−24478. doi: 10.1364/OE.26.024461
    [22]
    SWINEHART D F. The beer-lambert law[J]. Journal of Chemical Education, 1962, 39(7): 333. doi: 10.1021/ed039p333
    [23]
    MAO T, CUADROS A P, MA X, et al. Coded aperture optimization in X-ray tomography via sparse principal component analysis[J]. IEEE Transactions on Computational Imaging, 2019, 6: 73−86.
    [24]
    YI X, WALIA E, BABYN P. Generative adversarial network in medical imaging: A review[J]. Medical Image Analysis, 2019, 58: 101552. doi: 10.1016/j.media.2019.101552
  • Related Articles

    [1]FAN Xuelin, WEN Yuqi, QIAO Zhiwei. Sparse Reconstruction of Computed Tomography Images with Transformer Enhanced U-net[J]. CT Theory and Applications, 2024, 33(1): 1-12. DOI: 10.15953/j.ctta.2023.183
    [2]ZHANG Yi, DING Renwei, ZHAO Shuo, SUN Shimin, HAN Tianjiao. Shallow Profile Data Denoising Method Based on Improved Cycle-consistent Generative Adversarial Network[J]. CT Theory and Applications, 2023, 32(1): 15-25. DOI: 10.15953/j.ctta.2022.053
    [3]DU Congcong, QIAO Zhiwei. Sparse CT Reconstruction Based on Adversarial Residual Dense Deep Neural Network[J]. CT Theory and Applications, 2022, 31(2): 163-172. DOI: 10.15953/j.ctta.2021.032
    [4]DONG Xiaoying, CHEN Ping. Segmentation of Liver Tumors Based on Bottleneck Residual Attention Mechanism U-net[J]. CT Theory and Applications, 2021, 30(6): 661-670. DOI: 10.15953/j.1004-4140.2021.30.06.01
    [5]CHEN Kang, DI Guidong, ZHANG Jiajia, ZHOU You, WU Yao, ZHANG Guangzhi. Reservoir Prediction Based on Improved U-Net Convolutional Neural Network[J]. CT Theory and Applications, 2021, 30(4): 403-416. DOI: 10.15953/j.1004-4140.2021.30.04.01
    [6]CAI Ning, WANG Shijie, CHEN Lujie, ZHANG Yikun, CHEN Yang, LUO Shouhua, GU Ning. Low-dose Micro-CT Imaging Method Based on Progressive Network Processing[J]. CT Theory and Applications, 2020, 29(4): 435-446. DOI: 10.15953/j.1004-4140.2020.29.04.06
    [7]OUYANG Min, LIU Shou-wei, LI Lie, WANG Da-wei. Kirchhoff Integral Prestack Time Migration with Full Azimuth Angle Gathers Generation Method and its Implementation[J]. CT Theory and Applications, 2018, 27(6): 739-747. DOI: 10.15953/j.1004-4140.2018.27.06.07
    [8]REN Rong, WANG Zhen, FU Guang-hui, SUN Chang-ning, YUAN Li-jun, CAO Tie-sheng. General Pascal's Law: A Possible Basic Hydrostatic Law[J]. CT Theory and Applications, 2018, 27(2): 137-143. DOI: 10.15953/j.1004-4140.2018.27.02.01
    [9]LIU Hua, CHEN Ping, PAN Jin-xiao. Research on CT Imaging Method Along a General Scanning Trajectory[J]. CT Theory and Applications, 2014, 23(5): 743-750.
    [10]YU Shi-jian, LIU Run-ze. Tomography of a Minimum Travel Time Ray Tracing on a Triangular Net[J]. CT Theory and Applications, 2013, 22(3): 401-408.

Catalog

    Article views (655) PDF downloads (91) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return