Citation: | ZHANG Y, DING R W, ZHAO S, et al. Shallow Profile Data Denoising Method Based on Improved Cycle-consistent Generative Adversarial Network[J]. CT Theory and Applications, 2023, 32(1): 15-25. DOI: 10.15953/j.ctta.2022.053. (in Chinese). |
[1] |
李一保, 张玉芬, 刘玉兰, 等. 浅地层剖面仪在海洋工程中的应用[J]. 工程地球物理学报, 2007,(1): 4−8.
LI Y B, ZHANG Y F, LIU Y L, et al. Application of subbottom profiler to ocean engineering[J]. Chinese Journal of Engineering Geophysics, 2007, (1): 4−8. (in Chinese).
|
[2] |
刘玉萍, 丁龙翔, 杨志成, 等. 利用浅剖资料进行海底底质分析[J]. 物探与化探, 2016,40(1): 66−72.
LIU Y P, DING L X, YANG Z C, et al. Seabed sediment analysis using sub-bottom profile data[J]. Geophysical and Geochemical Exploration, 2016, 40(1): 66−72. (in Chinese).
|
[3] |
李平, 杜军. 浅地层剖面探测综述[J]. 海洋通报, 2011,30(3): 344−350.
LI P, DU J. Review on the probing of sub-bottom profiler[J]. Marine Science Bulletin, 2011, 30(3): 344−350. (in Chinese).
|
[4] |
顾兆峰, 张志珣, 刘怀山. 南黄海西部地区浅层气地震特征[J]. 海洋地质与第四纪地质, 2006,(3): 65−74.
GU Z F, ZHANG Z X, LIU H S. Seismic features of shallow gas in the western area of the Yellow Sea[J]. Marine Geology & Quaternary Geology, 2006, (3): 65−74. (in Chinese).
|
[5] |
颜中辉, 栾锡武, 潘军, 等. 海上浅地层剖面处理的关键去噪技术[J]. 海洋地质前沿, 2016,32(9): 64−70.
YAN Z H, LUAN X W, PAN J, et al. Key denoising techniques in marine sub-bottom shallow profiling[J]. Marine Geological Frontiers, 2016, 32(9): 64−70. (in Chinese).
|
[6] |
施凤. 浅地层剖面数据精处理关键技术研究[D]. 武汉: 武汉大学, 2017.
|
[7] |
冯强强, 温明明, 吴衡, 等. 海洋浅地层剖面资料的数据处理方法[J]. 海洋地质前沿, 2013,29(11): 49−53, 66.
FENG Q Q, WEN M M, WU H, et al. Data processing methods for marine sub-bottom profiles[J]. Marine Geological Frontiers, 2013, 29(11): 49−53, 66. (in Chinese).
|
[8] |
JEONG B J, LEE Y H. Design of weighted order statistic filters using the perceptron algorithm[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3264−3269. doi: 10.1109/78.330393
|
[9] |
GONZALEZ R C, WOODS R E. 数字图像处理[M]. 阮秋琦, 阮宇智, 译. 北京: 电子工业出版社, 2003.
|
[10] |
MA Y Y, LI G F, WANG Y J, et al. Random noise attenuation by f-x spatial projection-based complex empirical mode decomposition predictive filtering[J]. Applied Geophysics, 2015, 12(1): 47−54. doi: 10.1007/s11770-015-0467-3
|
[11] |
潘军, 栾锡武, 孙运宝, 等. SRME技术在海洋浅水高分辨率地震勘探中的应用[J]. 地球物理学进展, 2015,30(1): 429−434.
PAN J, LUAN X W, SUN Y B, et al. Application of SRME technology in marine shallow water high resolution seismic exploration[J]. Progress in Geophysics, 2015, 30(1): 429−434. (in Chinese).
|
[12] |
王兆湖, 王建民, 高振山, 等. 叠前自适应f-x域相干噪音衰减技术及应用[J]. 地球物理学进展, 2013,28(5): 2605−2610.
WANG Z H, WANG J M, GAO Z S, et al. Pre-stack self-adaptive f-x domain coherent noise attenuation technology and application[J]. Progress in Geophysics, 2013, 28(5): 2605−2610. (in Chinese).
|
[13] |
YANG J, LIN N, ZHANG K, et al. Reservoir characterization using multi-component seismic data in a novel hybrid model based on clustering and deep neural network[J]. Natural Resources Research, 2021: 1−26.
|
[14] |
杨晶, 丁仁伟, 林年添, 等. 基于深度学习的地震断层智能识别研究进展[J]. 地球物理学进展, 2022,37(1): 298−311.
YANG J, DING R W, LIN N T, et al. Research progress of intelligent identification of seismic fault based on deep learning[J]. Progress in Geophysics, 2022, 37(1): 298−311. (in Chinese).
|
[15] |
刘俊, 曹俊兴, 丁蔚楠, 等. 基于双向长短期记忆神经网络的储层孔隙度预测方法研究[J/OL]. 地球物理学进展: 1-9. (2021-07-23)[2021-12-18]. http://kns.cnki.net/kcms/detail/11.2982.P.20210723.1308.045.html.
LIU J, CAO J X, DING W N, et al. Research on reservoir porosity prediction method based on bidirectional long-term and short-term memory neural network[J/OL]. Progress in Geophysics: 1-9. (2021-07-23)[2021-12-18]. http://kns.cnki.net/kcms/detail/11.2982.P.20210723.1308.045.html. (in Chinese).
|
[16] |
TUKEY J W. Exploratory data analysis[J]. Journal of the American Statistical Association, 1977, 28(1): 163−182.
|
[17] |
SUMAN S. Image denoising using new adaptive based median filter[J]. Signal & Image Processing an International Journal, 2014, 5(4): 1−13.
|
[18] |
QUAN H D, ZHANG H C, JIA H T. An improved adaptive median filtering algorithm[C]//International Symposium on Test Automation and Instrumentation, 2006: 269-272.
|
[19] |
JAIN V, SEUNG H S. Natural image denoising with convolutional networks[C]//International Conference on Neural Information Processing Systems. Piscataway: IEEE Press, 2008: 769-776.
|
[20] |
ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2016, 26(7): 3142−3155.
|
[21] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, 2014. Cambridge: MIT Press, 2014: 2672-2680.
|
[22] |
WANG H, LI Y, DONG X. Generative adversarial network for desert seismic data denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020. DOI:10.1109/ TGRS.2020.3030692.
|
[23] |
DONG X T, LI Y. Denoising the optical fiber seismic data by using convolutional adversarial network based on loss balance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020. DOI: 10.1109/TGRS.2020.3036065.
|
[24] |
ZHU J Y, PAKR T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, 2017. Washington: IEEE Computer Society, 2017: 2242-2251.
|
[25] |
梁俊杰, 韦舰晶, 蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索, 2020,14(1): 1−17.
LIANG J J, WEI J J, JIANG Z F. Generative adversarial networks GAN overview[J]. Journal of Frontiers of Computer Science & Technology, 2020, 14(1): 1−17. (in Chinese).
|
[26] |
梁雪灿. 基于生成对抗网络的声学图像超分辨率研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
|
[27] |
ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017. Washington: IEEE Computer Society, 2017: 5967-5976.
|
[28] |
王照, 陈恩庆. 基于深度残差生成对抗网络的本征图像分解算法[J]. 计算机应用与软件, 2022,39(3): 201−206.
WANG Z, CHEN E Q. Eigen image decomposition algorithm for generating countermeasure network based on depth residual[J]. Computer Applications and Software, 2022, 39(3): 201−206. (in Chinese).
|
[29] |
NAYEF B H, ABDULLAH S N H S, SULAIMAN R, et al. Optimized leaky ReLU for handwritten Arabic character recognition using convolution neural networks[J]. Multimedia Tools and Applications, 2021, 81(2): 2065−2094.
|
[30] |
杨久强, 林年添, 张凯, 等. 深度神经网络模型超参数选取及评价研究: 以含油气性多波地震响应特征提取为例[J]. 石油物探, 2022,61(2): 236−244.
YANG J Q, LIN N T, ZHANG K, et al. Hyperparametric selection and evaluation of deep neural network models: A case study of feature extraction of multi-wave seismic response in an oil-gas reservoir[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 236−244. (in Chinese).
|
[31] |
王议迎, 丁仁伟, 李建平, 等. 联合改进STA/LTA与MLoG算子的微震P波到时自动拾取方法[J]. 山东科技大学学报(自然科学版), 2021,40(6): 1−10.
WANG Y Y, DING R W, LI J P, et al. Automatic pickup of microseismic P-wave arrival based on improved STA/LTA and MloG operators[J]. Journal of Shandong University of Science and Technology (Natural Science), 2021, 40(6): 1−10. (in Chinese).
|
[1] | HE Yu, WANG Chengxiang, YU Wei. Industrial Computed Tomography Image Denoising Network Based on Channel Attention Mechanism[J]. CT Theory and Applications, 2025, 34(4): 543-550. DOI: 10.15953/j.ctta.2025.068 |
[2] | QIAN Peizhang, QIAO Zhiwei, DU Congcong. Fast EPRI Imaging Based on 3MNet Denoising Network[J]. CT Theory and Applications, 2023, 32(1): 55-66. DOI: 10.15953/j.ctta.2022.065 |
[3] | WEI Yili, YANG Ziyuan, XIA Wenjun, WANG Tao, ZHANG Yi. Low-dose CT Denoising Based on Subspace Projection and Edge Enhancement[J]. CT Theory and Applications, 2022, 31(6): 721-729. DOI: 10.15953/j.ctta.2022.108 |
[4] | ZHOU Junjie, WU Xiangling, LI Wenjie, LI Jinghe. Denoising of Seismic Data Based on Block Dictionary Learning Theory[J]. CT Theory and Applications, 2022, 31(5): 557-566. DOI: 10.15953/j.1004-4140.2022.31.05.03 |
[5] | LI Guihua, WANG Jingqi, XU Yun, ZHANG Wenbo, WANG Shulin. Random Noise Simulation Method for Seismic Exploration Based on Typical Decomposition[J]. CT Theory and Applications, 2019, 28(6): 659-667. DOI: 10.15953/j.1004-4140.2019.28.06.03 |
[6] | CHEN Jian-yong, WANG Dao-kuo, DENG Wen-feng, YUAN Pei-xin. Application and Research on Reconstructed Wavelet Threshold Functionin Signal Denoising[J]. CT Theory and Applications, 2017, 26(1): 63-68. DOI: 10.15953/j.1004-4140.2017.26.01.08 |
[7] | YANG Li, ZHANG Bao-jin, WEN Peng-fei, ZHANG Ru-wei, XUE Hua, GU Yuan. Study on Data Processing of Sub-bottom Profile Based on the Chirp Signal in Order to Distinguish Thin Layer[J]. CT Theory and Applications, 2016, 25(6): 653-660. DOI: 10.15953/j.1004-4140.2016.25.06.05 |
[8] | FAN Ji-chang, HAI Yan, HAN Yan-jie, LIU Ming-jun, DUAN Yong-hong, JIA Shi-xu. Multi-wavelet Method as Well as its Application to DSS Data De-noising[J]. CT Theory and Applications, 2014, 23(6): 951-957. |
[9] | LIU Yu-ping, LI Li-qing, XUE Hua, DENG Gui-lin, ZHANG Bao-jin. Frequency Shift Processing for the Hypocenter with Short-term Single-frequency Pulse in the Ocean Sub-bottom Profile Data[J]. CT Theory and Applications, 2014, 23(2): 227-235. |
[10] | DONG Fang, HU Liang, LI Bo-lin, LI Ming, CHEN Hao, WANG Yuan, ZHANG Cheng-xin, XU Zhou. Contour Data Denoise Based on Inter-Scale Correlations of Contourlet Transform[J]. CT Theory and Applications, 2008, 17(4): 62-66. |