ISSN 1004-4140
CN 11-3017/P
ZHANG W J, HUANG G, DING H N, et al. Research Progress of Scattering Artifact Correction in Medical Cone-beam Computed Tomography Imaging Based on Deep Learning[J]. CT Theory and Applications, 2023, 32(2): 285-296. DOI: 10.15953/j.ctta.2022.131. (in Chinese).
Citation: ZHANG W J, HUANG G, DING H N, et al. Research Progress of Scattering Artifact Correction in Medical Cone-beam Computed Tomography Imaging Based on Deep Learning[J]. CT Theory and Applications, 2023, 32(2): 285-296. DOI: 10.15953/j.ctta.2022.131. (in Chinese).

Research Progress of Scattering Artifact Correction in Medical Cone-beam Computed Tomography Imaging Based on Deep Learning

More Information
  • Received Date: June 28, 2022
  • Revised Date: October 10, 2022
  • Accepted Date: October 11, 2022
  • Available Online: October 23, 2022
  • Published Date: March 30, 2023
  • In medical computed tomography imaging systems, Compton scattered photons generated by the interaction between X-rays and objects have a serious impact on image quality, especially in cone-beam computed tomography and multi-layer detector systems. Currently, there are many scattering artifact correction methods, which can be classified into three categories: hardware, software, and hybrid software and hardware correction methods. However, with the advances in computing power and development of deep learning in medical image processing, new methods of scattering artifact correction have appeared in recent years. This study first introduces traditional correction methods. Then, a method of scattering artifact correction based on deep learning is described in detail, which is divided into the correction method based on image domain and the correction method based on projection domain. Various deep-learning neural networks for this method are also introduced in detail. Finally, the application prospects of the deep learning method in multi-source computed tomography imaging scattering artifacts were probed .
  • [1]
    JOSEPH P M, SPITAL R D. The effects of scatter in X-ray computed tomography[J]. Medical Physics, 1982, 9(4): 464−472. doi: 10.1118/1.595111
    [2]
    邵义文, 卢文婷, 周凌宏. 锥形束CT系统的散射校正方法分析[J]. 中国医学物理学杂志, 2008,25(3): 634−637.

    SHAO Y W, LU W T, ZHOU L H. Review of the methods for X-ray scatter correction in cone-beam CT system[J]. Chinese Journal of Medical Physics, 2008, 25(3): 634−637. (in Chinese).
    [3]
    张峰, 闫镔, 李建新, 等. 工业X-CT散射校正技术综述[J]. CT理论与应用研究, 2009,18(4): 34−43.

    ZHANG F, YAN B, LI J X, et al. Review of scatter correction on X-ray industrial computed tomography[J]. CT Theory and Applications, 2009, 18(4): 34−43. (in Chinese).
    [4]
    戎军艳, 刘文磊, 高鹏, 等. 锥束CT散射抑制方法综述[J]. CT理论与应用研究, 2016,25(2): 235−250. DOI: 10.15953/j.1004-4140.2016.25.02.15.

    RONG J Y, LIU W L, GAO P, et al. The review of scatter suppression methods in cone beam CT[J]. CT Theory and Applications, 2016, 25(2): 235−250. DOI: 10.15953/j.1004-4140.2016.25.02.15. (in Chinese).
    [5]
    MAIER J, SAWALL S, KNAUP M, et al. Deep scatter estimation (DSE): Accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network[J]. Journal of Nondestructive Evaluation, 2018, 37(3): 1−9.
    [6]
    MAIER J, EULIG E, VöTH T, et al. Real-time scatter estimation for medical CT using the deep scatter estimation: Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation[J]. Medical Physics, 2019, 46(1): 238−249. doi: 10.1002/mp.13274
    [7]
    HSIEH J. 计算机断层成像技术: 原理、设计、伪像和进展[M]. 张朝宗, 郭志平, 王贤刚, 等, 译. 1版. 北京: 科学出版社, 2006: 22-25.
    [8]
    NIU T, ZHU L. Overview of X-ray scatter in cone-beam computed tomography and its correction methods[J]. Current Medical Imaging, 2010, 6(2): 82−89. doi: 10.2174/157340510791268515
    [9]
    ENDO M, TSUNOO T, SATOH K, et al. Performance of cone-beam CT using a flat-panel imager[C]// Medical Imaging 2001: Physics of Medical Imaging. SPIE, 2001: 815-821.
    [10]
    SIEWERDSEN J H, MOSELEY D J, BAKHTIAR B, et al. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors: Antiscatter grids in cone-beam CT[J]. Medical Physics, 2004, 31(12): 3506−3520. doi: 10.1118/1.1819789
    [11]
    KYRIAKOU Y, KALENDER W. Efficiency of antiscatter grids for flat-detector CT[J]. Physics in Medicine & Biology, 2007, 52(20): 6275.
    [12]
    COBOS S F, NIKOLOV H N, POLLMANN S I, et al. Reduction of ring artifacts caused by 2D anti-scatter grids in flat-panel CBCT[C]//Medical Imaging 2020: Physics of Medical Imaging, 2020, International Society for Optics and Photonics: 1131228: 537-543.
    [13]
    张定华. 锥束CT技术及其应用[M]. 1版. 西安: 西北工业大学出版社, 2010: 142-155.
    [14]
    NEITZEL U. Grids or air gaps for scatter reduction in digital radiography: A model calculation[J]. Medical Physics, 1992, 19(2): 475−481. doi: 10.1118/1.596836
    [15]
    RüHRNSCHOPF E P, KLINGENBECK K. A general framework and review of scatter correction methods in X-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches[J]. Medical Physics, 2011, 38(7): 4296−4311. doi: 10.1118/1.3599033
    [16]
    NAIMUDDIN S, HASEGAWA B, MISTRETTA C A. Scatterglare correction using a convolution algorithm with variable weighting[J]. Medical Physics, 1987, 14(3): 330−334. doi: 10.1118/1.596088
    [17]
    谢世朋, 丁铭晨. 基于自适应点扩散函数的锥束CT散射校正[J]. 中国医学影像技术, 2015,31(11): 1763−1767. doi: 10.13929/j.1003-3289.2015.11.041

    XIE S P, DING M C. Scatter correction for cone beam CT using self-adaptive scattered point spread function[J]. Chinese Journal of Medical Imaging Technology, 2015, 31(11): 1763−1767. (in Chinese). doi: 10.13929/j.1003-3289.2015.11.041
    [18]
    BHATIA N, TISSEUR D, LéTANG J. Convolution-based scatter correction using kernels combining measurements and Monte Carlo simulations[J]. Journal of X-ray Science and Technology, 2018, 25(4): 613−628.
    [19]
    ROGERS D. Fifty years of Monte Carlo simulations for medical physics[J]. Physics in Medicine & Biology, 2006, 51(13): R287.
    [20]
    闫浩, 牟轩沁, 罗涛, 等. 锥束X射线CT投影的蒙特卡罗仿真[J]. 西安交通大学学报, 2008,42(4): 414−417. doi: 10.3321/j.issn:0253-987X.2008.04.007

    YAN H, MOU X Q, LUO T, et al. Monte Carlo simulation of cone-beam X-ray computer tomography projection[J]. Journal of Xi’an Jiaotong University, 2008, 42(4): 414−417. (in Chinese). doi: 10.3321/j.issn:0253-987X.2008.04.007
    [21]
    COLIJN A P, BEEKMAN F J. Accelerated simulation of cone beam X-ray scatter projections[J]. IEEE Transactions on Medical Imaging, 2004, 23(5): 584−590.. doi: 10.1109/TMI.2004.825600
    [22]
    MA J, PIAO Z, HUANG S, et al. Monte Carlo simulation fused with target distribution modeling via deep reinforcement learning for automatic high-efficiency photon distribution estimation[J]. Photonics Research, 2021, 9(3): B45−B56. doi: 10.1364/PRJ.413486
    [23]
    XU Y, CHEN Y, TIAN Z, et al. Metropolis Monte Carlo simulation scheme for fast scattered X-ray photon calculation in CT[J]. Optics Express, 2019, 27(2): 1262−1275. doi: 10.1364/OE.27.001262
    [24]
    BAER M, KACHELRIEß M. Hybrid scatter correction for CT imaging[J]. Physics in Medicine & Biology, 2012, 57(21): 6849.
    [25]
    MASLOWSKI A, WANG A, SUN M S, et al. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter. Part I: Core algorithms and validation[J]. Medical Physics, 2018, 45(5): 1899−1913. doi: 10.1002/mp.12850
    [26]
    WANG A, MASLOWSKI A, MESSMER P, et al. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter. Part II: System modeling, scatter correction, and optimization[J]. Medical Physics, 2018, 45(5): 1914−1925. doi: 10.1002/mp.12849
    [27]
    李双镭, 张丽, 陈志强, 等. 450 keV锥束CT系统的散射校正研究[J]. 核电子学与探测技术, 2006,26(6): 908−908. doi: 10.3969/j.issn.0258-0934.2006.06.059

    LI S L, ZHANG L, CHEN Z Q, et al. X-ray scatter correction algorithm for 450 keV cone-beam CT system[J]. Nuclear Electronics & Detection Technology, 2006, 26(6): 908−908. (in Chinese). doi: 10.3969/j.issn.0258-0934.2006.06.059
    [28]
    唐天旭, 段晓礁, 周志政, 等. 基于散射校正板的锥束微纳CT系统的散射校正[J]. 光学学报, 2019,39(8): 0834001. doi: 10.3788/AOS201939.0834001

    TANG T X, DUAN X J, ZHOU Z Z, et al. Scatter correction based on beam stop array for cone-beam micro-computed tomography[J]. Acta Optica Sinica, 2019, 39(8): 0834001. (in Chinese). doi: 10.3788/AOS201939.0834001
    [29]
    GAO H, FAHING R, BENNETT N R, et al. Scatter correction method for X-ray CT using primary modulation: Phantom studies[J]. Medical Physics, 2010, 37(2): 934−946. doi: 10.1118/1.3298014
    [30]
    ZHU L, BENNETT N R, FAHRIG R. Scatter correction method for X-ray CT using primary modulation: Theory and preliminary results[J]. IEEE transactions on medical imaging, 2006, 25(12): 1573−1587.
    [31]
    GAO H, ZHU L, FAHRIG R. Virtual scatter modulation for X-ray CT scatter correction using primary modulator[J]. Journal of X-ray Science and Technology, 2017, 25(6): 1−17.
    [32]
    SCHöRNER K. Development of methods for scatter artifact correction in industrial X-ray cone-beam computed tomography[D]. München: Technische Universität München, 2012.
    [33]
    LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60−88. doi: 10.1016/j.media.2017.07.005
    [34]
    KIDA S, NAKAMOTO T, NAKANO M, et al. Cone beam computed tomography image quality improvement using a deep convolutional neural network[J]. Cureus, 2018, 10(4): e2548.
    [35]
    XU S, PRINSEN P, WIEGERT J, et al. Deep residual learning in CT physics: Scatter correction for spectral CT[C]//2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), October 21-28, 2017, Atlanta, GA, USA. New York: IEEE, 2017: 1-3.
    [36]
    HANSEN D C, LANDRY G, KAMP F, et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction[J]. Medical Physics, 2018, 45(11): 4916−4926. doi: 10.1002/mp.13175
    [37]
    NOMURA Y, XU Q, SHIRATO H, et al. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network[J]. Medical Physics, 2019, 46(7): 3142−3155. doi: 10.1002/mp.13583
    [38]
    LEE H, LEE J. A deep learning-based scatter correction of simulated X-ray images[J]. Electronics, 2019, 8(9): 944. doi: 10.3390/electronics8090944
    [39]
    RUSANOV B, EBERT M A, MUKWADA G, et al. A convolutional neural network for estimating cone-beam CT intensity deviations from virtual CT projections[J]. Physics in Medicine & Biology, 2021, 66(21): 215007.
    [40]
    钟安妮. 基于深度卷积神经网络的CT/CBCT图像伪影校正方法研究[D]. 广州: 南方医科大学, 2020: 44-59

    ZHONG A N. Artifact correction of CT/CBCT image based on deep convolutional network[D]. Guangzhou: Southern Medical University, 2020: 44-59. (in Chinese).
    [41]
    LALONDE A, WINEY B, VERBURG J, et al. Evaluation of CBCT scatter correction using deep convolutional neural networks for head and neck adaptive proton therapy[J]. Physics in Medicine & Biology, 2020, 65(24): 245022.
    [42]
    XIE S, YANG C, ZHANG Z, et al. Scatter artifacts removal using learning-based method for CBCT in IGRT system[J]. IEEE Access, 2018, 6: 78031−78037. doi: 10.1109/ACCESS.2018.2884704
    [43]
    JIANG Y, YANG C, YANG P, et al. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN)[J]. Physics in Medicine & Biology, 2019, 64(14): 145003.
    [44]
    LIANG X, CHEN L, NGUYEN D, et al. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy[J]. Physics in Medicine & Biology, 2019, 64(12): 125002.
    [45]
    KURZ C, MASPERO M, SAVENIJE M H, et al. CBCT correction using a cycle-consistent generative adversarial network and unpaired training to enable photon and proton dose calculation[J]. Physics in Medicine & Biology, 2019, 64(22): 225004.
    [46]
    HARMS J, LEI Y, WANG T, et al. Paired cycle-GAN: Based image correction for quantitative cone-beam computed tomography[J]. Medical Physics, 2019, 46(9): 3998−4009. doi: 10.1002/mp.13656
    [47]
    CHEN L, LIANG X, SHEN C, et al. Synthetic CT generation from CBCT images via deep learning[J]. Medical Physics, 2020, 47(3): 1115−1125. doi: 10.1002/mp.13978
    [48]
    KIDA S, KAJI S, NAWA K, et al. Visual enhancement of cone-beam CT by use of cycleGAN[J]. Medical Physics, 2020, 47(3): 998−1010.. doi: 10.1002/mp.13963
    [49]
    TIEN H J, YANG H C, SHUENG P W, et al. Cone-beam CT image quality improvement using cycle-deblur consistent adversarial networks (cycle-deblur GAN) for chest CT imaging in breast cancer patients[J]. Scientific Reports, 2021, 11(1): 1−12. doi: 10.1038/s41598-020-79139-8
    [50]
    DONG G, ZHANG C, LIANG X, et al. A deep unsupervised learning model for artifact correction of pelvis cone-beam CT[J]. Frontiers in Oncology, 2021: 11.
    [51]
    QIU R L, LEI Y, SHELTON J, et al. Deep learning-based thoracic CBCT correction with histogram matching[J]. Biomedical Physics & Engineering Express, 2021, 7(6): 065040.
    [52]
    LIU J, YAN H, CHENG H, et al. CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation[J]. Quantitative Imaging in Medicine and Surgery, 2021, 11(12): 4820. doi: 10.21037/qims-20-1056
    [53]
    PARK H S, JEON K, LEE S H, et al. Unpaired-paired learning for shading correction in cone-beam computed tomography[J]. IEEE Access, 2022, 10: 26140−26148. doi: 10.1109/ACCESS.2022.3155203
    [54]
    ZHANG Y, DING S G, GONG X C, et al. Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients[J]. Technology in Cancer Research & Treatment, 2022, 21: 15330338221085358.
    [55]
    ISKENDER B, BRESLER Y. Scatter correction in X-ray CT by physics-inspired deep learning[J]. arXiv Preprint arXiv: 2103.11509, 2021.
    [56]
    LANDRY G, HANSEN D, KAMP F, et al. Comparing Unet training with three different datasets to correct CBCT images for prostate radiotherapy dose calculations[J]. Physics in Medicine & Biology, 2019, 64(3): 035011.
    [57]
    ROSSI M, CERVERI P. Comparison of supervised and unsupervised approaches for the generation of synthetic CT from cone-beam CT[J]. Diagnostics, 2021, 11(8): 1435. doi: 10.3390/diagnostics11081435
    [58]
    DONG G, ZHANG C, DENG L, et al. A deep unsupervised learning framework for the 4D CBCT artifact correction[J]. Physics in Medicine & Biology, 2022, 67(5): 055012.
    [59]
    ENGEL K J, HERRMANN C, ZEITLER G. X-ray scattering in single- and dual-source CT[J]. Medical Physics, 2008, 35(1): 318−332.
    [60]
    GONG H, YAN H, JIA X, et al. X-ray scatter correction for multi-source interior computed tomography[J]. Medical Physics, 2017, 44(1): 71−83. doi: 10.1002/mp.12022
    [61]
    GONG H, LI B, JIA X, et al. Physics model-based scatter correction in multi-source interior computed tomography[J]. IEEE Transactions on Medical Imaging, 2017, 37(2): 349−360.
    [62]
    PIVOT O, FOURNIER C, TABARY J, et al. Scatter correction for spectral CT using a primary modulator mask[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 2267−2276. doi: 10.1109/TMI.2020.2970296
    [63]
    ERATH J, VöTH T, MAIER J, et al. Deep learning-based forward and cross-scatter correction in dual-source CT[J]. Medical Physics, 2021, 48(9): 4824−4842. doi: 10.1002/mp.15093
  • Related Articles

    [1]CHEN Zonggui, WEI Ningning, LI Zhoufan, PAN Guihong, HUANG Minjiang. Methods Research on Correction for Intracranial Metal Artifacts Based on Prior Image Utilization[J]. CT Theory and Applications, 2025, 34(1): 141-148. DOI: 10.15953/j.ctta.2024.002
    [2]XIANG Ronglin, ZHANG Li. Suppression Method for Cone-Beam CT Artifact Based on FDK Compensation and Dual-Source Weighting[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.222
    [3]LUO Chen, REN Qing, LIU Jianqiang, NIU Tianye. Development of Motion Artifact Correction Solutions for the Cone-beam CT Images during Pancreatic Cancer Image-guided Radiotherapy[J]. CT Theory and Applications, 2022, 31(6): 761-771. DOI: 10.15953/j.ctta.2022.066
    [4]TANG Shao-jie, ZHANG Yan-bo, WANG You-ming, ZHAO Feng, QIAO Zhi-wei, YANG Xiao-jun, MOU Xuan-qin, ZHU Yi-ning. An Optimal Bone Correction Capable of Simultaneously Suppressing Various Types of Image Artifacts[J]. CT Theory and Applications, 2018, 27(3): 301-314. DOI: 10.15953/j.1004-4140.2018.27.03.03
    [5]ZHOU Li-ping, SUN Yi, CHENG Kai, YU Jian-qiao. Deep Learning Based Beam Hardening Artifact Reduction in Industrial X-ray CT[J]. CT Theory and Applications, 2018, 27(2): 227-240. DOI: 10.15953/j.1004-4140.2018.27.02.11
    [6]LI Zhong-chuan, MENG Fan-yong, YANG Min. The Correction of Fan-beam CT Image Artifacts Induced by Deflection of Linear-detectors[J]. CT Theory and Applications, 2014, 23(2): 237-248.
    [7]ZHANG Hua, HUANG Kui-dong, SHI Yi-kai, LI Ming-jun. Ring Artifact Correction Method Based on Air Scan for Cone-beam CT[J]. CT Theory and Applications, 2012, 21(2): 247-254.
    [8]LI Qing-liang, YAN Bin, SUN Hong-sheng, LI Lei, ZHANG Feng. Review of Metal Artifacts Correction Methods on X-ray Computed Tomography[J]. CT Theory and Applications, 2011, 20(1): 131-140.
    [9]HU Dong-cai, CHEN Hao, ZHANG Ding-hua. Scatter Correction Method for Flat-Panel Detector-Based Cone Beam CT[J]. CT Theory and Applications, 2009, 18(1): 16-22.
    [10]GU Jian-wei, ZHANG Li, CHEN Zhi-qiang, XING Yu-xiang, GAO He-wei. The Review of Reasons and Correction Methods for Artifacts in ICT Images[J]. CT Theory and Applications, 2005, 14(3): 24-28.
  • Cited by

    Periodical cited type(3)

    1. 张明辉,徐涛,田小波,唐国彬,刘震,白志明. 虚拟震源地震探测方法及其应用. 地球与行星物理论评(中英文). 2025(02): 215-224 .
    2. 郭云飞,雷建设,关鹏虎. 海南岛及邻区中小地震重定位. CT理论与应用研究(中英文). 2025(02): 191-204 .
    3. 夏心茹,江国明,赵大鹏. 郯庐断裂中南段地壳速度结构与地震活动性研究. CT理论与应用研究(中英文). 2025(02): 163-174 .

    Other cited types(0)

Catalog

    Article views (1085) PDF downloads (237) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return