Citation: | WANG X L, ZHAO J H. Value of AI-based Multiomics Analysis in Differentiating COVID-19 from Community-acquired Pneumonia[J]. CT Theory and Applications, 2023, 32(3): 357-366. DOI: 10.15953/j.ctta.2023.049. (in Chinese). |
[1] |
FERRARI D, MOTTA A, STROLLO M, et al. Routine blood tests as a potential diagnostic tool for COVID-19[J]. Clinical Chemistry Laboratory Medicine, 2020, 58(7): 1095−1099. DOI: 10.1515/cclm-2020-0398.
|
[2] |
WEN X, LENG P, WANG J, et al. Clinlabomics: Leveraging clinical laboratory data by data mining strategies[J]. BMC Bioinformatics, 2022, 23(1): 387. DOI: 10.1186/s12859-022-04926-1.
|
[3] |
LEBEDEV A V, WESTMAN E, Van WESTEN G J, et al. Random Forest ensembles for detection and prediction of Alzheimer's disease with a good between-cohort robustness[J]. Neuroimage Clinical, 2014, 6: 115−125. DOI: 10.1016/j.nicl.2014.08.023.
|
[4] |
LI Y, XIA L. Coronavirus disease 2019 (COVID-19): Role of chest CT in diagnosis and management[J]. American Journal of Roentgenol, 2020, 214(6): 1280−1286. DOI: 10.2214/AJR.20.22954.
|
[5] |
BAI H X, HSIEH B, XIONG Z, et al. Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT[J]. Radiology, 2020, 296: E46−E54. DOI: 10.1148/radiol.2020200823.
|
[6] |
DAI W, KE P F, LI Z Z, et al. Establishing classifiers with clinical laboratory indicators to distinguish COVID-19 from community-acquired pneumonia: Retrospective cohort study[J]. Journal Medical Internet Research, 2021, 23(2): e23390. DOI: 10.2196/23390.
|
[7] |
WANG Y, FAN Z, WANG S, et al. The diagnostic value of platelet distribution width in patients with mild COVID-19[J]. Journal Clinical Laboratory Analysis, 2021, 35(4): e23703. DOI: 10.1002/jcla.23703.
|
[8] |
XIE G, DING F, HAN L, et al. The role of peripheral blood eosinophil counts in COVID-19 patients[J]. Allergy, 2021, 76(2): 471−482. DOI: 10.1111/all.14465.
|
[9] |
TABACHNIKOVA A, CHEN S T. Roles for eosinophils and basophils in COVID-19?[J]. Nature Reviews Immunology, 2020, 20(8): 461. DOI: 10.1038/s41577-020-0379-1.
|
[10] |
PREDILETTO I, D'ANTONI L, CARBONARA P, et al. Standardizing PaO2 for PaCO2 in P/F ratio predicts in-hospital mortality in acute respiratory failure due to COVID-19: A pilot prospective study[J]. European Journal of Internal Medicine, 2021, 92: 48−54. DOI: 10.1016/j.ejim.2021.06.002.
|
[11] |
TORRES A, CILLONIZ C, NIEDERMAN M S, et al. Pneumonia[J]. Nature Reviews Disease Primers, 2021, 7(1): 25. DOI: 10.1038/s41572-021-00259-0.
|
[12] |
滕晓蕾, 谢云, 陈道南, 等. 重症新冠肺炎与重症社区获得性肺炎临床特征对比[J]. 中华危重病急救医学, 2022,34(5): 485−491. DOI: 10.3760/cma.j.cn121430-20211013-01477.
TENG X L, XIE Y, CHEN D N, et al. Comparative analysis of clinical features between severe coronavirus disease 2019 and severe community acquired pneumonia[J]. Chinese Critical Care Medicine, 2022, 34(5): 485−491. DOI: 10.3760/cma.j.cn121430-20211013-01477. (in Chinese).
|
[13] |
杨莎, 李东泽, 郑艾宜, 等. 简易体征评分系统对新冠患者严重程度和预后预测价值的多中心观察性研究[J]. 中国胸心血管外科临床杂志, 2023,30(2): 167−172. DOI: 10.7507/1007-4848.202203002.
YANG S, LI D Z, ZHENG A Y, et al. Predictive value of the simplified signs scoring system for the severity and prognosis of patients with COVID-19: A multicenter observational study[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2023, 30(2): 167−172. DOI: 10.7507/1007-4848.202203002. (in Chinese).
|
[14] |
SONG F, SHI N, SHAN F, et al. Emerging 2019 Novel Coronavirus (2019-nCoV) pneumonia[J]. Radiology, 2020, 295(1): 210−217. DOI: 10.1148/radiol.2020200274.
|
[15] |
KOO H J, LIM S, CHOE J, et al. Radiographic and CT features of viral pneumonia[J]. Radiographics, 2018, 38(3): 719−739. DOI: 10.1148/rg.2018170048.
|
[16] |
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: The bridge between medical imaging and personalized medicine[J]. Nature Reviews Clinical Oncology, 2017, 14(12): 749−762. DOI: 10.1038/nrclinonc.2017.141.
|
[17] |
ZHANG T, YUAN M, ZHONG Y, et al. Differentiation of focal organising pneumonia and peripheral adenocarcinoma in solid lung lesions using thin-section CT-based radiomics[J]. Clinical Radiology, 2019, 74(1): 78.e23−78.e30. DOI: 10.1016/j.crad.2018.08.014.
|
[18] |
WANG B, LI M, MA H, et al. Computed tomography-based predictive nomogram for differentiating primary progressive pulmonary tuberculosis from community-acquired pneumonia in children[J]. BMC Medical Imaging, 2019, 19(1): 63. DOI: 10.1186/s12880-019-0355-z.
|
[19] |
YANLING W, DUO G, ZUOJUN G, et al. Radiomics nomogram analyses for differentiating pneumonia and acute paraquat lung injury[J]. Scientific Reports, 2019, 9(1): 15029. DOI: 10.1038/s41598-019-50886-7.
|
[20] |
田斌, 余晖, 任基刚, 等. 基于机器学习的多种分类模型在新型冠状病毒肺炎与社区获得性肺炎鉴别诊断中的效能[J]. 放射学实践, 2021,36(5): 590−595. DOI: 10.13609/j.cnki.1000-0313.2021.05.004.
TIAN B, YU H, REN J G, et al. Effectiveness of multiple classification models based on machine learning in the differential diagnosis of COVID-19 and community-acquired pneumonia[J]. Radiologic Practice, 2021, 36(5): 590−595. DOI: 10.13609/j.cnki.1000-0313.2021.05.004. (in Chinese).
|
[21] |
SHIRI I, SOROURI M, GERAMIFAR P, et al. Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients[J]. Computers in Biology Medicine, 2021, 132: 104304. DOI: 10.1016/j.compbiomed.2021.104304.
|
[22] |
CHAO H, FANG X, ZHANG J, et al. Integrative analysis for COVID-19 patient outcome prediction[J]. Medical Image Analysis, 2021, 67: 101844. DOI: 10.1016/j.media.2020.101844.
|