Citation: | LIU Jiang, TU Qicui, LI Bingying, HUANG Xin, ZHANG Guangzhi, ZHANG Jiajia, WU Yao, ZHU Shengwei. Fault Prediction Method Based on Convolutional Neural Network[J]. CT Theory and Applications, 2020, 29(5): 522-533. DOI: 10.15953/j.1004-4140.2020.29.05.02 |
[1] | PAN Zhijie, LIU Ling, LI Qingyao, QU Tingting, ZHANG Shuai, XIE Xueqian. Deep Learning Image Reconstruction to Improve Computed Tomography Image Quality of the Phantom with Standard Liver Density[J]. CT Theory and Applications, 2025, 34(4): 677-685. DOI: 10.15953/j.ctta.2024.056 |
[2] | TANG Haoqi, YANG Jun, CHEN Rongchang. A Method for Detecting Foreign Objects in Pastries Based on Deep Learning[J]. CT Theory and Applications, 2025, 34(4): 560-570. DOI: 10.15953/j.ctta.2025.066 |
[3] | Du Congcong, Qiao Zhiwei. EPRI Sparse-Reconstruction Method Based on Deep Learning[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.047 |
[4] | LI Ling, ZHANG Mingxia, SUN Ying, DUAN Shuhong, GUO Jia, DU Changyue, LIU Mengke, ZHANG Yimeng, SUN Lei, HUO Meng, WANG Rengui. Imaging Study of COVID-19 Patients with Diabetes Mellitus by Computed Tomograpgh Quantitative Indicators Based on Deep Learning[J]. CT Theory and Applications, 2023, 32(3): 373-379. DOI: 10.15953/j.ctta.2023.020 |
[5] | ZHANG Wenjun, HUANG Gang, DING Haining, XU Hongchun. Research Progress of Scattering Artifact Correction in Medical Cone-beam Computed Tomography Imaging Based on Deep Learning[J]. CT Theory and Applications, 2023, 32(2): 285-296. DOI: 10.15953/j.ctta.2022.131 |
[6] | XIONG Shan, CHEN Bo, MAO Jie, LIU Sibin, HUANG Yuanyi, CHENG Jianmin. Application of Computer-aided Diagnosis System Based on Deep Learning in Rib Fracture Diagnosis[J]. CT Theory and Applications, 2022, 31(5): 617-622. DOI: 10.15953/j.1004-4140.2022.31.05.08 |
[7] | LIU Shiyou, QU Fuliang, ZHOU Fan, DENG Lifeng. Deep Learning Reservoir Parameter Prediction Based on Seismic Attribute Reduction: Take Ledong Area of Yinggehai Basin as an Example[J]. CT Theory and Applications, 2022, 31(5): 577-586. DOI: 10.15953/j.ctta.2021.048 |
[8] | HAN Zefang, SHANGGUAN Hong, ZHANG Xiong, HAN Xinglong, GUI Zhiguo, CUI Xueying, ZHANG Pengcheng. Advances in Research on Low-dose CT Imaging Algorithm Based on Deep Learning[J]. CT Theory and Applications, 2022, 31(1): 117-134. DOI: 10.15953/j.1004-4140.2022.31.01.14 |
[9] | CHEN Kang, DI Guidong, ZHANG Jiajia, ZHOU You, WU Yao, ZHANG Guangzhi. Reservoir Prediction Based on Improved U-Net Convolutional Neural Network[J]. CT Theory and Applications, 2021, 30(4): 403-416. DOI: 10.15953/j.1004-4140.2021.30.04.01 |
[10] | ZHOU Li-ping, SUN Yi, CHENG Kai, YU Jian-qiao. Deep Learning Based Beam Hardening Artifact Reduction in Industrial X-ray CT[J]. CT Theory and Applications, 2018, 27(2): 227-240. DOI: 10.15953/j.1004-4140.2018.27.02.11 |
1. |
王宝江,吴振锋,吉娃阿英,杨桂林,孙洪,钟昆,于强,任战利. 高角度走滑断缝体断裂识别及解释——以鄂尔多斯盆地镇泾区块为例. 天然气地球科学. 2025(01): 142-154 .
![]() | |
2. |
梁雁,刘广峰. 基于卷积神经网络的人脸识别研究. 数字通信世界. 2021(01): 101-102 .
![]() |