Citation: | GUAN W M, WEI X, SUN J, et al. Bone Mineral Density and Body Composition Characteristics of Patients with Coronavirus Disease 2019 after One-year Follow-up[J]. CT Theory and Applications, 2023, 32(3): 411-418. DOI: 10.15953/j.ctta.2023.052. (in Chinese). |
[1] |
World Health Organization (2022) Coronavirus (COVID-19) Dashboard. World Health Organization, Geneva[EB/OL]. [2023-02-10]. https://www.covid19.who.int.
|
[2] |
中华人民共和国国家卫生健康委员会办公厅, 中华人民共和国国家中医药管理局办公室. 新型冠状病毒肺炎诊疗方案(试行第九版)[J]. 中国医药, 2022,17(4): 481−487. DOI: 10.3760/cma.j.cn331340-20220325-00065.
General Office of the National Health Commission of the People's Republic of China, Office of the State Administration of Traditional Chinese Medicine of the People's Republic of China. Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial version 9)[J]. China Medicine, 2022, 17(4): 481−487. DOI: 10.3760/cma.j.cn331340-20220325-00065. (in Chinese).
|
[3] |
CUI F, ZHOU H S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019[J]. Biosens Bioelectron, 2020, 165: 112349. DOI: 10.1016/j.bios.2020.112349.
|
[4] |
BAI H X, HSIEH B, XIONG Z, et al. Performance of radiologists in differentiating COVID-19 from Non-COVID-19 viral pneumonia at chest CT[J]. Radiology, 2020, 296(2): E46−e54. DOI: 10.1148/radiol.2020200823.
|
[5] |
AI T, YANG Z, HOU H, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases[J]. Radiology, 2020, 296(2): E32−e40. DOI: 10.1148/radiol.2020200642.
|
[6] |
魏巍, 魏璇, 颜颖, 等. 基于CT图像及临床分型探讨新型冠状病毒肺炎患者住院时长的影响因素[J]. 临床和实验医学杂志, 2022,21(9): 998−1002. DOI: 10.3969/j.issn.1671-4695.2022.09.028.
WEI W, WEI X, YAN Y, et al. Application of medical imaging features for the analysis of influencing factors of hospitalization days in COVID-19[J]. Journal of Clinical and Experimental Medicine, 2022, 21(9): 998−1002. DOI: 10.3969/j.issn.1671-4695.2022.09.028. (in Chinese).
|
[7] |
王振常, 张鹏, 吕晗, 等. 树立多要素关联诊断新理念提升医学影像学在临床诊疗中的价值[J]. 国际医学放射学杂志, 2021,44(5): 497−500. DOI: 10.19300/J.2021.S19394.
WANG Z C, ZHANG P, LV H, et al. Establish a new concept of multi-factor associated diagnosis to enhance the value of medical imaging in clinical diagnosis and treatment[J]. International Journal of Medical Radiology, 2021, 44(5): 497−500. DOI: 10.19300/J.2021.S19394. (in Chinese).
|
[8] |
BALCOM E F, NATH A, POWER C. Acute and chronic neurological disorders in COVID-19: Potential mechanisms of disease[J]. Brain, 2021, 144(12): 3576−3588. DOI: 10.1093/brain/awab302.
|
[9] |
CHUNG M K, ZIDAR D A, BRISTOW M R, et al. COVID-19 and cardiovascular disease: From bench to bedside[J]. Circulation Research, 2021, 128(8): 1214−1236. DOI: 10.1161/circresaha.121.317997.
|
[10] |
SCHULTZE J L, ASCHENBRENNER A C. COVID-19 and the human innate immune system[J]. Cell, 2021, 184(7): 1671−1692. DOI: 10.1016/j.cell.2021.02.029.
|
[11] |
CHENG Y, YANG H, LIU Z, et al. Will the bone mineral density in postmenopausal women get worse during the COVID-19 pandemic?[J]. Medical Hypotheses, 2022, 162: 110803. DOI: 10.1016/j.mehy.2022.110803.
|
[12] |
ZEIGLER Z. COVID-19 self-quarantine and weight gain risk factors in adults[J]. Current Obesity Reports, 2021, 10(3): 423−433. DOI: 10.1007/s13679-021-00449-7.
|
[13] |
CHENG X, ZHANG Y, WANG C, et al. The optimal anatomic site for a single slice to estimate the total volume of visceral adipose tissue by using the quantitative computed tomography (QCT) in Chinese population[J]. European Journal of Clinical Nutrition, 2018, 72(11): 1567−1575. DOI: 10.1038/s41430-018-0122-1.
|
[14] |
BERKTAŞ B M, GÖKÇEK A, HOCA N T, et al. COVID-19 illness and treatment decrease bone mineral density of surviving hospitalized patients[J]. European Review for Medical and Pharmacological Sciences, 2022, 26(8): 3046−3056. DOI: 10.26355/eurrev_202204_28636.
|
[15] |
CUI J, SHIBATA Y, ZHU T, et al. Osteocytes in bone aging: Advances, challenges, and future perspectives[J]. Ageing Research Reviews, 2022, 77: 101608. DOI: 10.1016/j.arr.2022.101608.
|
[16] |
BUEHRING B, VISWANATHAN R, BINKLEY N, et al. Glucocorticoid-induced osteoporosis: An update on effects and management[J]. The Journal of Allergy and Clinical Immunology, 2013, 132(5): 1019−1030. DOI: 10.1016/j.jaci.2013.08.040.
|
[17] |
ABRAHAM T M, PEDLEY A, MASSARO J M, et al. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors[J]. Circulation, 2015, 132(17): 1639−1647. DOI: 10.1161/circulationaha.114.015000.
|
[18] |
IBRAHIM M M. Subcutaneous and visceral adipose tissue: Structural and functional differences[J]. Obesity Reviews, 2010, 11(1): 11−18. DOI: 10.1111/j.1467-789X.2009.00623.x.
|
[19] |
SHUSTER A, PATLAS M, PINTHUS J H, et al. The clinical importance of visceral adiposity: A critical review of methods for visceral adipose tissue analysis[J]. The British Journal of Radiology, 2012, 85(1009): 1−10. DOI: 10.1259/bjr/38447238.
|
[20] |
FARON A, LUETKENS J A, SCHMEEL F C, et al. Quantification of fat and skeletal muscle tissue at abdominal computed tomography: Associations between single-slice measurements and total compartment volumes[J]. Abdom Radiology (NY), 2019, 44(5): 1907−1916. DOI: 10.1007/s00261-019-01912-9.
|
[21] |
CHANDARANA H, DANE B, MIKHEEV A, et al. Visceral adipose tissue in patients with COVID-19: Risk stratification for severity[J]. Abdom Radiology (NY), 2021, 46(2): 818−825. DOI: 10.1007/s00261-020-02693-2.
|
[22] |
PETERSEN A, BRESSEM K, ALBRECHT J, et al. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany[J]. Metabolism, 2020, 110: 154317. DOI: 10.1016/j.metabol.2020.154317.
|
[1] | JIANG Dong, QIN Lixin. Spectral Filtration Sn 150 kV Combined with Advanced Simulated Iterative Reconstruction in Lumbar Computed Tomography Examination[J]. CT Theory and Applications, 2024, 33(1): 49-55. DOI: 10.15953/j.ctta.2022.240 |
[2] | CHENG Haiping, PENG Zhoufeng, LI Liang, CENG Feifei, CHA Yunfei. Study on the Correlation between the Volume of Epicardial Adipose Tissue and Lumbar Bone Mineral Density[J]. CT Theory and Applications, 2021, 30(1): 131-138. DOI: 10.15953/j.1004-4140.2021.30.01.14 |
[3] | ZHAO Yun, ZHANG Hai-bo, XU Lin, CHEN Lun-gang, WANG Kai-hua, XU Jian. Improved Imaging in Lumbar Facet Joint Degeneration in the Clinical Understanding[J]. CT Theory and Applications, 2012, 21(1): 97-104. |
[4] | ZHANG Hai-bo, HU Xi-yao, FU Chuan-ming, XU Lin, WANG Kai-hua. MSCT One-stop Recombination in Lumbar Disease Diagnosis Application Value[J]. CT Theory and Applications, 2012, 21(1): 81-88. |
[5] | HUANG Shao-quan, YE Jun, CHEN Xue-lian, ZOU Shi-lin, KUANG Yong-cai, LIU Yong-bin. CT Analysis of Degenerative Lesion in Lumbar Zygapophysis[J]. CT Theory and Applications, 2011, 20(1): 115-122. |
[6] | XU Chun-lin, ZHANG Xue-mei, PENG Lei, GUO Yan-zhang, LIU Wei, WANG Jian-guo, ZHU Wei-feng. An Analysis of Clinical and CT of Peripheral Lumbar Spinal Stenosis Compression Lumbar Intervertebral Vein[J]. CT Theory and Applications, 2004, 13(4): 31-35. |
[7] | GAO Xing-ming, XU Kai. Diagnosis of Multislice Spiral CT in Lumbar Disc Protrusion[J]. CT Theory and Applications, 2003, 12(2): 36-38. |
[8] | REN Zhong-qing, XU Kai, CHENG Guang-jun, LI Shao-dong. CT Diagnosis of Facet Syndrome of Lumbar Spine[J]. CT Theory and Applications, 2002, 11(4): 30-32. |
[9] | WU Ai-qin, ZHENG Wen-long, XU Chong-yong. Study of CT Opposite Scanning Technique in Lumbar Isthmus[J]. CT Theory and Applications, 2002, 11(3): 31-32. |
[10] | HUANG Kai-yin. The Application of CT and X-ray Examination on Traumatic Osteoporosis[J]. CT Theory and Applications, 2002, 11(2): 32-35. |
1. |
李岩,王志忠,芦春花. DXA联合胸腹部CT扫描筛查骨质疏松症的效果. 实用临床医学. 2025(01): 80-82 .
![]() |